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Abstract. A new supervised adaptive metric approach is introduced
for mapping an input vector space to a plottable low-dimensional sub-
space in which the pairwise distances are in maximum correlation with
distances of the associated target space. The new formalism of multivari-
ate subspace regression (MSR) is based on cost function optimization, and
it allows assessing the relevance of input vector attributes. An application
to molecular descriptors in a chemical compound database is presented for
targeting octanol-water partitioning properties.
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1 Introduction

The connection of data vectors with a specific target is a fundamental problem
in data analysis. Input data of real valued vectors are fundamental objects in
many scientific fields, for example, ranging from spectrum data and gene ex-
pression data in medicine and biology via sensor data in engineering sciences
to compound fingerprints in chemistry. Targets can be categorial labels in clas-
sification tasks, real-valued dependent variables in regression problems or even
vectors of properties in association scenarios.

The empirical assessment of target information is often a time consuming
and expensive task, e.g., the identification of tissue types in histological samples
requires manual work and wet-lab experiments. Due to this careful assessment it
is assumed that those targets assigned to the sample vectors reflect, up to a few
mislabelings, a reliable (constant) ground truth that should not be further trans-
formed. In contrast to this, the data vectors live in a space of measurements that
usually quantify general properties, but which preferably should be predictive of
the targets, for example, by applying an appropriate transformation.

A number of different techniques exists that allow a link between the input
space and the target space, such as linear discriminant analysis (LDA) for dis-
crete class labels [3], generalized linear models (GLM) for regression tasks [2],
and canonical correlation analysis (CCA) for association problems [1]. These
are well-established linear models. Complementary, neural networks like feed-
forward networks provide a nonlinear connection between input space and the
target, but they do require a choice of architectural parameters in the hidden
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layer or the selection of an appropriate learning algorithm, making it difficult to
assess stability and reliability.

The approach presented here allows to optimize the input vector represen-
tations for matching the target relationships. More precisely, a matrix distance
with the structure of the Mahalanobis distance is adapted to yield maximum
correlation of the pairwise vector distances and the associated pairwise target
distances. The approach thus offers an alternative way for solving linear inverse
models, such as calculated by the Moore-Penrose pseudoinverse. The new model
will be called multivariate subspace regression (MSR) in the following.

Adaptive matrix metrics have proved to be useful for k-nearest neighbors [7]
and learning vector quantization with local metrics [4]. Recently a feature rank-
ing method based on a class discriminant function has been proposed as robust
alternative to LDA [6] used for complementing hard feature selection strategies
of evolutionary algorithms (EA) for assessing molecular descriptors for biologi-
cal and physicochemical property prediction essential in drug design [5]. So far
the metric-driven feature rating scheme was limited by a simplifying two-class
assumption of low and high octanol-water partitioning coefficient (logP) targets.
The new formalism presented in the following overcomes these limitations for
dealing with feature rating in general regression contexts. A database of 439
chemical compounds used to study the influence of the underlying 73 molecular
descriptors on the logP regression task.

2 Methods

Let N input vectors be given as xj ∈ X ⊂ RM , xj = (xjk)k=1...M , 1 ≤ j ≤ N with
associated target vectors lj ∈ L ⊂ Rq, lj = (ljk)k=1...q. The transformable input
space X shall be linked to the constant target space L by the relationship

Sdv = r(DL,Dλ
X) = max . (1)

Therein, DL is the square distance matrix between all pairs of target vectors,
here defined by Euclidean distance; Dλ

X is the matrix of all input vector distances
calculated by an adaptive metric depending on a parameter matrix λ. Thus,
parameters λi are sought that maximize the Pearson correlation (r) between
input and target space.

The model parameters are obtained by maximizing the functional Sdv using
its gradient

∂Sdv

∂λ
=
∂r(DL,Dλ

X)
∂Dλ

X

· ∂Dλ
X

∂λ
=

N∑
i=1

N∑
j=1

∂r(DL,Dλ
X)

∂(Dλ
X)i,j

· ∂(Dλ
X)i,j
∂λ

. (2)

The required derivatives of the Pearson correlation are calculated by:

∂r(DL,Dλ
X)

∂(Dλ
X)i,j

=

(
(DL)i,j − µDL

)
− B

D ·
(
(Dλ

X)i,j − µDλ
X

)
√

C ·D
. (3)
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Therein, µDL and µDλ
X

denote the mean values of the matrices, and the notations

B =
∑N
i=1

∑N
j=1

(
(DL)i,j−µDL

)
·
(
(Dλ

X)i,j−µDλ
X

)
,C =

∑N
i=1

∑N
j=1

(
(DL)i,j−µDL

)2
and D =

∑N
i=1

∑N
j=1

(
(Dλ

X)i,j − µDλ
X

)2 are used.
For optimization the quasi Newton Broyden-Fletcher-Goldfarb-Shanno

method was taken. Optimization was stopped, when the improvement of subse-
quent evaluations of Sdv dropped below 10−8.

Because of its flexibility, the input vectors xi and xj ∈ X are chosen to be
compared by a matrix metric with Mahalanobis structure in this work:

(Dλ
X)i,j = dv

(
xi,xj |λ

)
=
√

(xi − xj)T · λ · λT · (xi − xj). (4)

Unlike Mahalanobis distance there is no inverse covariance matrix employed,
instead, the outer self-product of the parameter matrix λ ∈ RM×u defines an
adaptive matrix Λ = λ·λ

T

. This positive-definite matrix Λ contains components
that weigh the influence of attribute pairs (g, k) in the data space. Its maximum
rank is u if the number of input dimensions M is larger than the u-dimensional
subspace defined by X

T

·λ. This subspace is an informative representation of the
input space focused on the target association. Since, in principle, any dimension
u can be chosen it is more flexible than inverse linear models which require the
same dimensionality as the target space. As a very general recommendation, a
choice of u ≤M and u ≤ N , or u ≤ 3 for visualization is possible, depending on
the desired representation accuracy expressed by Sdv .

The derivative of Eqn. 4, useful for gradient-based optimization, is

∂dv
(
xi,xj |λ

)
∂λ

=
(xi − xj) ·

(
(xi − xj)T · λ

)
dv (xi,xj |λ)

. (5)

If regression targets are modeled in a one-dimensional subspace p = X
T

· λ, the
projected scalar values obviously depend on the data vectors and the parameter
vector. Arbitrary scaling and shifting of the projections p are matched to fit by
choosing α and β in p̂ = α · p+ β such that

F =
N∑
i=1

(
li − (α · pi + β)

)2 = min . (6)

3 Results

A compound data set with 73 molecular features and associated logP values
for 439 chemical compounds has been taken for the analysis, online available at
http://dig.ipk-gatersleben.de/sardux/sardux.html [6]. Therein, an inde-
pendent test set of 30 compounds has been defined that covers the range of logP
values uniformly and that is not confined in the convex hull of the training data.

Two relevant cases are considered here: a multidimensional regression task
on the scalar logP target values and a regression involving three disjoint classes.
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While the first application shall illustrate its competitiveness with state-of-the-
art inverse linear models, the second application unfolds its unique use for map-
ping data related to the three-dimensional space of independent (orthogonal)
class labels onto a two-dimensional subspace.

The only model parameter needed to be chosen is the dimensionality of the
subspace, i.e. one and two in these examples. The stability is assessed by running
the optimization 10 times with randomly initialized parameter vectors λ.

For the multidimensional regression problem, well-proven tools are available
for comparison to the averages and standard deviations of 10 MSR runs: the
matrix left division operator ’\’ based on MATLAB Householder reflections and
the R:limSolve package implementing the Moore-Penrose pseudoinverse. Com-
parison Table 1 shows that MSR is better than MATLAB, and slightly worse
then R:limSolve only for the training data. The low standard deviations of MSR
indicate a very good reproducibility. The left panel of Figure 1 shows the MSR
regression result of a model of median performance on the training data, using
projections transformed according to Eqn. 6.

r2 MSR MATLAB(7.5.0):’\’ R:limSolve(11.09)
train 0.9357± 0.0001 0.9231 0.9361
test 0.8704± 0.0004 0.8413 0.8660

Table 1: Regression results of the new method compared to approaches based
on pseudoinverse calculations.

The problem with three disjoint classes has been created by splitting the logP val-
ues into the lower, middle, and upper 33.3% quantile, assigning three-dimensional
targets (0, 0, 1) for logP < 1.78, (0, 1, 0) for 1.78 ≤ logP < 3.0132, and (1, 0, 0)
for logP ≥ 3.0132 values. Note that this is different from assigning integer class
labels 1, 2, and 3, which, for example, would induce a closer relationship of the
class labels 1 and 2 compared to 1 and 3. The right panel of Figure 1 shows the
two-dimensional transformation of the data space aiming at arranging the pro-
jections according to the target relationships. Despite of logP being a continuous
regression variable naturally reflected in the molecular descriptor vectors MSR
is able to render a good separation with only decent overlap of the projections
by a linear transformation of the 73 input vector attributes.

Figure 2 shows the attribute relevance profiles corresponding to the two re-
gression tasks. At first glance a high degree of similarity can be detected, such
as the highly important molecular van der Waals volume (Mv). Yet, descriptors
like atomic polarizability (Sp) and the number of sulfor atoms(nS) show quite a
different influence on the specific task. These results are quite certain, because
the box plots display a high reproducibility of the model runs. As interesting to
chemists, the profiles also indicate that many other variables do only have minor
relevance for the regression tasks.
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Fig. 1: MSR projection subspaces of logP data set. Left: 1D regression task (big
crosses: test data). Right: 3D disjoint label separation in 2D (filled symbols:
test data).
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Fig. 2: Molecular descriptor relevance profiles given by
∑u
i=1 |λ

i − µλi |.
Top: 1D regression task (u = 1). Bottom: 3D disjoint label separation (u=2).

97

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence 
and Machine Learning.  Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.



4 Conclusions

The proposed method adjusts a data metric of Mahalanobis structure for arrang-
ing the input vector relationships in good agreement to the target relationships.
The metric parameters result from the optimization of a correlation-based cost
function connecting input and target space. The distance can be re-interpreted
as a mapping of the data vectors to a low-dimensional Euclidean space where
points aim at reflecting the target relationships.

These transformed data points can be used as data replacement in subsequent
analysis steps with standard Euclidean methods for classification and multi-
variate regression. In contrast to traditional feature assessment methods, the
proposed adaptive matrix metric contains information not only about singular
attributes, but about pairs of attributes. This is, for example, useful in com-
bination with feedforward neural networks, because they integrate over input
feature combinations in the hidden layer rather than utilizing single features.

Alternatively, the learned metric parameters can be used for identifying the
relevance of pairs of input data attributes. As demonstrated for the logP pre-
diction task, the rating may depend on the target of regression or multiple class
labeling. The method has good empirical convergence properties and good po-
tential for general data processing tasks.
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