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Abstract. This work uses Machine Learning techniques and other classical 

approaches to analyze both physiological variables and treatment characteristics in 

patients undergoing chronic renal failure. Firstly, the use of Self-Organizing Maps 

is proposed in order to extract qualitative knowledge. Secondly, the Hemoglobin 

concentration is predicted one-month ahead by models based on the Multilayer 

Perceptron; the prediction uses information from two months (the current month 

and the previous one). Achieved results support the usefulness of these tools in 

daily clinical practice. 

1 Introduction 

Secondary anemia due to end-stage renal disease (ESRD) is a clinical situation that is 

present in more than 90% of patients undergoing periodic hemodialysis. In the 

framework of Chronic Kidney Disease (CKD), anemia is mostly due to the lack of 

Erythropoietin (EPO) production. As renal function performs worse in the ESRD, 

there is a decrease in the EPO production. It finally leads to the anemia. The 

symptoms due to anemia are quite variable, and they usually appear when Hb 

concentration is lower than 11 g/dl. The patients’ quality-of-life (QoL) decreases, and 

changes in the cardiac function may also involve an increase in the ratio of morbidity 

and mortality. 

 In these circumstances the administration of Erythropoiesis Stimulating Agents 

(ESAs) like recombinant human erythropoietin or darbepoetin is the treatment of 

choice trying to maintain the Hb levels between 11 and 12 g/dl. The clinical 

investigation performed in recent years regarding the administration of different rHu-

ESAs (recombinant Human-ESAs) has allowed the optimization of treatment and, 

consequently, the improvement in the QoL in patients undergoing chronic dialysis.  

However, ESAs are an expensive treatment that increases the high costs of the renal 

replacement therapy through dialysis and transplantation, and it is not without risks. 

The main secondary effects of ESAs are arterial hypertension, and thromboembolic 

complications including thrombosis of vascular access [1], [2]. Consequently, dosage 

optimization is critical to ensure adequate pharmacotherapy as well as patient’s 

safety. 
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 Although the guidelines for the administration of ESAs are followed in daily 

clinical routine, the response is not always the expected one since many complex and 

non-linear relationships tend to appear in the assimilation of the drug by the patient, 

and usual protocols take into account the average population response to the treatment 

[3]. Therefore, in spite of the general success of ESA therapy for correcting anemia 

and maintaining Hb levels in patients with CKD, the management of renal anemia 

with these agents often is labor-intensive and time-consuming. The response to the 

treatment with ESAs is highly dependent on the patient [4], [5]. The same dosages 

may have very different responses in different patients, most notably the so-called 

ESA-resistant patients, who do not respond to these agents, even after receiving high 

dosages. 

This work proposes a neural network approach as a medical decision aid, being the 

decision in this case the administration of ESAs. This work is a continuation of 

previous experiences developed by the authors in this field [6]. The models proposed 

in this work pursuit two main goals.  

First, a qualitative knowledge extraction by using Self-Organizing Maps (SOMs), 

which is the most extended visual data mining model in high dimensionality 

problems. This way, the profiles existing in the data are shown up, and therefore, it is 

possible to visualize the different physiological behaviors present in the database. 

This knowledge is crucial to know the relationships among variables, showing for 

example that the effect of EPO administrations is patient-dependent.  

Second, a predictor model of the Hb level for next month using physiological 

variables and the ESAs administrations in the current month and also in the past. By 

using this model, it is possible to check whether or not the Hb evolution matches the 

desired one.   

2 �eural models 

2.1 Self-Organizing Maps  

 The Self-Organizing Map consists of a set of neurons which are usually 

arranged in a one- or two-dimensional grid: an input layer, formed by n neurons (one 

neuron for each input variable) and an output layer in which the information is 

processed (the two-dimensional map) [7]. Although higher dimensional grids are also 

possible, they are hardly ever used because of their problematic visualization. Every 

neuron has a fixed position in the grid and is represented by an n-dimensional weight 

vector where n is the dimensionality of the input space. A pattern x is randomly 

chosen from the data set in each training step. Then, the neuron whose weight vector 

is the most similar to the user pattern is found; this neuron is called Best Matching 

Unit (BMU). The weight vectors of the BMU and its neighborhood are updated in 

order to bring the n-dimensional vectors of the map closer to the pattern x. That 

update is carried out by using the difference between the input vector and the weight 

vector. The neighborhood kernel determines which neurons around the BMU are 

updated, and how this update affects each neuron [8]. Once the map training is 

finished, the visualization of the two-dimensional map provides qualitative 

information about how the input variables are related to each other.  
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2.2 Multilayer perceptron 

 This model consists in a layered arrangement of individual computation units 

known as artificial neurons. The neurons of a given layer feed with their outputs the 

neurons of the next layer. The inputs xi to a neuron are multiplied by adaptive 

coefficients wi, called synaptic weights, which represent the connectivity between 

neurons; then a non-linear function is applied to the result of the linear combination. 

Neurons from a specific network are grouped together in layers that form a fully 

connected network. The first layer contains the input nodes, which are usually fully 

connected to hidden neurons and these are, in turn, connected to the output layer. In 

our case, only one output neuron is necessary, since only one variable is predicted at 

each time. The objective is to determine the best network parameters to model the 

relationship between the input and output variables. Although there are many other 

possible choices, its well-known behaviour as universal function model justifies its 

use [7]. 

3 Results 

 Data were prospectively collected throughout 2008 for patients with secondary 

anemia due to CKD in periodic hemodialysis. All were chronic hemodialysis stable 

patients, treated in hemodialysis centers affiliated to the University Hospital Dr. Peset 

(Valencia, Spain). ESAs were administered to patients through intravenous route, 

with a frequency determined by Hb levels (current and previous) and dose and type of 

ESA (there are two different kinds: EPO beta and darbepoetin). Patients were 

monitored monthly, and the following variables were collected: plasmatic 

concentration of Hb (g/dl), hematocrit (Ht) concentration (%), ferritin (ng/ml), 

administration of intra-venous iron (IV Fe) (mg/month), number of administrations of 

IV Fe, weekly dosage of EPO-beta (international units, IU), weekly dosage of 

darbepoetin-alpha (µg), number of administrations of ESAs and patient’s age and 

gender.  

 After data preprocessing, a qualitative analysis of data was carried out. We used 

SOM for this task. The goal is to find qualitative relationships between Hb and the 

rest of used features (weight, gender, age, previous Hb values and EPO and Fe doses 

in the two previous months). Since two different kinds of EPO were used, a different 

neural model was developed for each one of them. 

The neural model was tuned in terms of: a) the two possible types of learning (on-line 

and batch); b) the most common neighborhood functions (Gaussian and Mexican hat) 

c) the learning constants; d) the neurons coefficients’ initialization (50 different 

initializations for each possibility) and e) the possible architectures. The SOMs were 

analyzed in order to determine the quantization error (adjustment of the neurons’ 

vectors to the input data) and the topographic error (a measure of how well the 

neighborhood relationship is maintained between the original and the final 

bidimensional space), finally choosing the map that presented a lower product of the 

quantization error times the topographic one.  In the case of EPO beta, the final map 

had an architecture formed by 16x10 neurons, while in the case of darbepoietin the 

architecture was 13x9. Only results with EPO beta will be shown for the sake of the 

length of the paper. Figure 1 (right) shows the different groups provided by the 
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already trained SOM; those groups provide an intuitive representation of the different 

patients’ behaviors present in the data set. Moreover, Figure 1 (left) shows the number 

of patterns assigned to each neuron (the more filled the neuron, the higher the number 

of patterns assigned to it). 

 
Fig. 1: EPO beta. Relative number of patterns assigned to each neuron (left) and the 

different groups present in the trained SOM (right). 

 

Using the information about the different groups (it is obtained analyzing distances 

between prototypes using U-matrix [8]) and the areas of the map corresponding with 

the highest number of patterns, the next step is the analysis of the component maps, 

where the variables appear altogether (Figure 2). 

 
 Fig. 2: EPO beta: Component maps showing the weights of the neurons.  

 

 Figure 2 shows the relationship between EPO doses and the increase of Hb 

levels, and an apparent two-month delay in the EPO effects. In fact, the bottom-left 
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corner of the map corresponds with low doses of EPO and good levels of Hb; the 

winner map (Figure 1, left) shows up that there are many patterns following this 

behavior; analyzing the remainder of variables, it can be seen that it corresponds with 

male (Gender map, value 2) and relatively young (Age map) patients. The lower-right 

corner of the map also represents many patterns (Figure 1, left); this corner 

corresponds with stable patients (Hb increment is quite low and and Hb levels within 

the target range); therefore, low values of EPO doses are administered; this corner 

represents basically female patients with low weight and relatively elderly. EPO-

resistant patients are mapped onto the upper-left corner. These patients show low 

levels of Hb and no Hb increases after receiving EPO. 

 While the SOM approach provides a qualitative analysis of data, MLP is 

focused on a quantitative analysis instead. In particular, we focus on predicting next 

value of Hb (one-month ahead) using anthropometric features (weight, gender and 

age) as well as the current and previous-month values of Hb concentration  and also 

the EPO doses administered in those months. Therefore, the tackled problem consists 

of seven input variables and only one outcome. The data set was split into two data 

sets: a training set (67% of the data) and a test set (remainder 33%). The splitting 

criterion was checked by testing that basic statistics of both data sets matched each 

other. The Levenberg-Marquardt learning algorithm was used due to its appropriate 

trade-off between accuracy and convergence speed [7]. The learning algorithm was 

run on-line since it is more appropriate for time series prediction than an off-line 

approach. It was early stopped by cross-validation. In order to avoid falling into local 

minima, each architecture (we used two layers and varied the number of neurons 

between 2 and 20) was initialized in 100 different ways.  

Neural models were compared with linear models using the same input variables. 

Linear models were fitted using a robust least-squares method to avoid problems with 

outliers. Table 1 shows the achieved results for the two kinds of EPO using both 

linear and neural models. Instead of using global indices which do not give 

information about the model behavior at the patient level, Table 1 shows the quartiles 

(25, 50 and 75%) of the distribution of performance indices (RMSE: Root Mean 

Square Error; MAE: Mean Absolute Error; ME: Mean Error). Those indices are 

calculated for each individual patient.  

 

 RMSE (g/dl) MAE (g/dl) ME (g/dl) 

Linear 0.55/0.76/1.04 0.45/0.66/0.85 -0.20/-0.02/0.22 

Neural 0.56/0.74/1.03 0.48/0.64/0.85 -0.18/0.00/0.22 

Beta (1034 patterns) 

Linear 0.50/0.68/0.87 0.42/0.54/0.75 -0.19/0.07/0.19 

Neural 0.48/0.61/0.83 0.38/0.49/0.69 -0.24/-0.05/0.06 

Darbepoietin (632 patterns) 

Table 1. Achieved results for linear and neural models in the Hb prediction. The 

quartiles of the distribution of performance indices are shown. 

 

 Given the similarity in the prediction performance, linear and neural models 

were compared using a non-parametric statistical test (Man-Whitney, U test). These 

tests showed that there were no significant differences between the outputs of one 

model and the outputs of the other in the case of EPO beta. However, significant 
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differences did appear for darbepoietin (p<0.05). Before applying the tests, the non-

normality of the models’ outputs was also assessed by the Kolmogorov-Smirnov test 

(p<0.05). 

4 Conclusions 

This work has proposed the use of neural models as a clinical decision aid in EPO 

dose individualization for anemic patients with CKD undergoing hemodialysis. A 

qualitative approach where the goal has been to find different behaviors in the data set 

has been firstly proposed. It can be seen as the first step of a behavior-based model. 

This way, different therapies can be applied to different behaviors. It has been shown 

the ability of the model to explain different data profiles qualitatively. 

Secondly, a quantitative approach has been proposed for the accurate prediction of Hb 

levels for next month using the variables measured currently and in the previous 

month. Linear models show a performance similar to neural models but they are 

statistically different each other in the case of darbepoietin (p<0.05) (not in the case of 

EPO beta). Prediction accuracy is within an acceptable range from a clinical point of 

view [9] 

The achieved results may have been conditioned by the multi-center approach. The 

exclusion of outlier patients derived from comorbidities and special situations who 

need a more individualized treatment, would increase the predictive value of the 

model. Therefore, this is one of our next future tasks to do. 
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