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Abstract. We present an approach for hypothesis-based image segmen-
tation basing on the integration of level set methods and discriminative
feature clustering techniques. Building up on previous work, we investigate
Localized Generalized Matrix Learning Vector Quantization (LGMLVQ)
to train a classifier for fore- and background of an image. We extend this
concept towards level set segmentation algorithms, where region descrip-
tors are used to adapt the object contour according to the image features.
The fusion of both methods outperforms their individual applications and
improve the performance compared to other state of the art segmentation
methods.

1 Introduction

In computer vision, figure-ground segmentation (FGS) divides an image into
two regions containing the object of interest and the background respectively.
Hypothesis-driven approaches for FGS rely on an initial hypothesis that pro-
vides an a priori assumption (e.g. from user interaction [1] or depth estimation
[2]) about a pixelwise affiliation to object or background. Unfortunately they
typically include incomplete or partially erroneous cues which can be caused by
the user or algorithmic problems. Hypothesis-based FGS consists of two steps:
the modeling of the feature-statistics of the hypothetical fore- and background
and the consecutive integration of those statistics in energy minimization tech-
niques like Markov random field formulations [1] or level set methods [3]. These
algorithms allow for advanced concepts like interactions of neighboring pixels or
contour constraints to derive compact regions. For example, Rother et al.[1] use
Gaussian mixture models together with the min-cut algorithm to optimize the
partition of an image. Similarly in [4], histograms are used as region descriptors
and are integrated into a level set energy functional including a smoothness term
to derive compact foreground segmentations. The statistical or descriptive mod-
eling of fore- and background does not account for the discriminability of the
used features (e.g. in the case of identical colors in fore- and background). In
[2], the statistics are modeled with prototypical feature representatives, where an
extended learning vector quantization approach [5, 6] is used to train a classifier
for fore- and background. There an integrated feature weighting is employed,
that discriminates between both regions.
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In this paper, we extend the concept of metrics adaptation [6] for FGS to-
wards a level set formulation. On the one hand, the feature weighting mechanism
implemented by the metrics adaptation in Generalized Learning Vector Quanti-
zation (GLVQ) [5, 6] improves the discrimination capabilities and yields a more
precise region modeling. On the other hand, the introduction of an additional
region constraint provided by the level set formulation leads to spatially coherent
results and reduces the dependence on the initial hypothesis.

2 Metrics Adaptation

Several methods can be used to model the statistics of fore- and background,
e.g. descriptive models like histograms [4]. In previous work [2] instead we use a
prototype-based classifier to represent homogeneous image regions by prototyp-
ical feature representatives. The image data I consist of M = 5 feature maps
F := {Fi(x)|i = 1..M} (RGB color and position information) and form the
dataset D := {�ξ|�ξ(x) = (F1(x)..FM (x))T ,x ∈ I}, comprising a feature vector
�ξ(x) at every image position x. To represent the dataset D by a set of pro-
totypical representatives, several learning methods e.g. standard vector quan-
tization, can be used. The Generalized Learning Vector Quantization (GLVQ)
[5] algorithm is defined by a network of N class-specific prototypical feature
representatives P :=

{
wp ∈ R

M |p = 1..N
}
. Since LVQ is a supervised learn-

ing method, a two class setup is used for figure-ground segmentation, where
c(wp) ∈ {0, 1} encodes the a priori (e.g. by the user) assigned class-membership
of every prototype. The goal of the GLVQ learning dynamics is to optimize the
representatives wp according to the classification error defined by the functional
E[D,P ] =

∑
�ξ∈D

1
1+e−µ(d) , with μ(d) = dJ−dK

dJ+dK
. Here the variables dJ = d(�ξ, wJ )

and dK = d(�ξ, wK) are the distances of a randomly selected feature vector �ξ ∈ D
to the most similar prototype wJ , c(�ξ) = c(wJ ) from the correct class and wK

from an incorrect class, respectively.
Instead of using the standard Euclidean metrics d(�ξ, wp) =‖ �ξ − wp ‖, re-

cently several adaptive metrics were proposed [6]. In the most general case, a
Mahalanobis-like metrics d(�ξ, wp) = (�ξ −wp)T Λp(�ξ −wp) is used, where the dis-
tance computation is extended towards a prototype specific M×M matrix Λp of
relevance factors (Localized Generalized Matrix LVQ, LGMLVQ). Using metrics
adaptation allows a weighting of the features according to the classification task
as well as complex non-linear decision boundaries also for a reduced number of
prototypes compared to the standard LVQ with multiple prototypes. The pro-
totypes wJ and wK as well as the corresponding relevance factors ΛJ and ΛK

are optimized by means of a stochastic gradient descent method according to
E[D,P ] on randomly chosen pairs (�ξ, c(�ξ)) (see [2] for the detailed derivatives
of E[D,P ]). Classification relies on nearest neighbor search where the label of
the prototype with smallest distance d(�ξ, wp) is assigned to a given feature �ξ.
The decision boundary or the confidence of the classification is represented by
the normalized margin μ(d), which is small if �ξ has a similar distance to the
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prototypes wJ and wK .
To apply this method for image segmentation [2], an hypothesis is used in

the following way. The hypothesis H is represented as a binary map indicating
which pixels belong to the foreground H(x) = 1 or the background H(x) = 0. In
the case of metrics adaptation, H is used as label c(�ξ(x)) := H(x) for the image
features to allow for an optimization of the prototypes P . To segment an image
on the basis of the adapted classifier, the image is partitioned into N segments
(binary maps) Vp ∈ {0, 1} by assigning all feature vectors �ξ(x) (i.e. pixels of
a particular image) independently to the best matching prototype. The final
segmentation A is combined by choosing the binary maps from the prototypes
assigned to the foreground A =

∑N
p c(wp)Vp.

3 Extension towards level set methods

Level set methods [3] are a class of nu-

Figure 1: Level set model. The
level set function φ(x) as a function
of the image position x returns a
height defining a 2D surface. The
cone-shaped surface intersects the
X-Y plane at zero height, implicitly
representing the contour.

merical algorithms derived from active con-
tour approaches. They use local information
measured around the contour (e.g. the im-
age gradient or global features as color and
texture) to align the contour with the object
boundary:

φ(x) =

⎧⎨
⎩

φ(x) < 0 if x ∈ Ω2

φ(x) = 0 if x ∈ Ω−

φ(x) > 0 if x ∈ Ω1

. (1)

There are two approaches to represent ac-
tive contours: explicitly (e.g. by a set of
control points changing their position) and
implicitly. In implicit representation approa-

ches as level set methods, the contour is defined by the level set function φ(x) ∈
Ω �→ � (Eq. 1), which divides the image plane Ω into two disjoint regions, Ω1

representing the background region, Ω2 the segmented object, and Ω− for the
contour of the segmented object itself.

For implicit contour representations, prominent formulations of energy func-
tional for image segmentation were given by Mumford and Shah [7], where they
use the mean gray value of a region as a simple region descriptor. This concept
was adopted by [8] formulating an extended energy functional, where additional
constraints on the contour length and region size are imposed.

E(φ(x)) =
2∑

i=1

∫
Ω

Xi(φ(x))·(�ξ(x)−ρi)2dx+ν

∫
Ω

|∇H(φ(x))|dx+γ

∫
Ω

X2dx (2)

Here X1 = H(φ(x)) only equals ’1’ when φ(x) > 0 and X2 = 1−H(φ(x)) when
φ(x) < 0, where H(φ(x)) is the Heaviside function.
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The region descriptors ρ1 and ρ2 in Eq. 2 are the average values of both

regions, i.e. ρ1 =
R
Ω X1�ξ(x)dxR

Ω X1dx
and ρ2 =

R
Ω X2�ξ(x)dxR

Ω X2dx
, were the first term of the

energy functional is minimal for a grouping into homogeneous regions. The
additional smoothness constraint favors compact regions as well as smooth region
boundaries.

The following Halmiton-Jacobi equation results from the minimization of
the energy functional with respect to the level set function φ(x) using gradient
descent:

∂φ(x)
∂t

= δ(φ(x))[ν · div
( ∇φ(x)
|∇φ(x)|

)
+ γ + λ1(�ξ(x)− ρ1)2 + λ2(�ξ(x)− ρ2)2]. (3)

This method combines the level set evolution by mean curvature [9] (i.e. ∂φ
∂t =

| � φ| div( �φ
|�φ|)) with an optimization of a single prototype for each region.

Extension of the GLVQ functional. Instead of using only one prototype to rep-
resent each region [8, 7] a LVQ network can be regarded as a generalization
towards multiple ones, allowing for a heterogeneous appearance of an object
and its background. To generalize the concept of metrics adaptation towards a
level set formulation, the GLVQ error function (Sec. 2) can be extended by the
contour term as:

E(φ(x)) =
∫

Ω

1
1 + e−μ(d)

dx + ν ·
∫

Ω

| � H(φ(x))|dx. (4)

The first term corresponds to the classification error where the sum over all
pixels is replaced by the integral over the level set function φ(x). This error term
is minimal if both regions can be well represented and discriminated whereas the
second term prefers short contours and compact regions as discussed before. To
minimize the proposed level set function, the gradient can be approximated as:

∂φ

∂t
= δ(φ(x))[ν·div

( �φ(x)
| � φ(x)|

)
−C(φ(x))·μ(d(ξ(x)))+(1−C(φ(x)))·μ(d(ξ(x)))].

(5)
Informally, the level set function is modified by the confidence of the classifi-
cation, represented by the margin μ(d(ξ(x))) (Sec. 2). In regions where the
classification is very confident, indicated by a large margin, a strong adaptation
occurs in the direction estimated by the classifier (indicated by C(φ(x)), where
C(φ(x)) = 1 if the pixel is classified as foreground and 0 otherwise).

Optimization. The algorithm starts with an initial contour provided by the

hypothesis H, i.e. φinit(x) =
{

1 if H(H) = 0
−1 if H(H) = 1 . The iterative optimization

of the level set function φ(x) consists of two steps. The first steps keeps φ(x)
fixed and minimizes the energy with respect to the prototypes P and relevance
matrices Λ by standard LGMLVQ learning (Sec. 2) according to an intermediate
hypothesis H = (1 − H(φ(x))). In the second step, the level set function is
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adapted according to Eq. 5 using Heun’s method [10], following the general form
yi+1 = yi + ε · h, with ε extrapolating from an old value yi to a new value yi+1

with a step size h. Both steps are iteratively computed along the initial level set
function until the function φ(x) converges or a maximum number of iterations is
reached. In general, the level set function is updated close to the zero level set Ω−

determined by the regularized delta function δ(φ, τ) = 1
π · τ

τ2+φ2 , where τ = 2.25.
Further parameters are the weighting of the mean curvature evolution ν = 1.3,
the parameters of the metrics adaptation adopted from [2] (α = 0.05, β = 0.005
using 10.000 adaptation steps each iteration) and the number of prototypes (5
for foreground and 3 for background in all experiments).

4 Experiments

The performance of the proposed method is evaluated on public benchmark data
[1]. The dataset consists of images of sample objects together with the ground
truth segmentation and a Trimap T = {TI = 0, TB = 64, TU = 128, TF = 255}
specifying the affiliation of every pixel to foreground TF or background TB (un-
known status TU , ignored regions TI). The initial hypothesis H is generated
by selecting TI , TB for background and TF , TU for foreground. The quality of
the segmentation is evaluated according to the pixelwise similarity to the ground
truth segmentation in two different setups (Condition A: single set of parameters
for all images, Condition B: individual contour weight ν for every image). The
results in Table 1 show that in Condition A the proposed method can successfully
improve the segmentation accuracy (it exceeds the baseline similarity of hypoth-
esis H) as well as improve the result compared to the individual application of
metrics adaptation and level set methods with histograms [4]. Adapting the cur-
vature weight ν for every image separately, finally yields a significantly improved
performance in Condition B. This experiment indicates the effectiveness of the
method according to the chosen parameters but is not directly comparable to
the other results.

5 Discussion

We propose a new level set formulation, where a discriminative approach is
followed to model the statistics of fore- and background instead of descriptive
region modeling. We show that the proposed integration of metrics adaptation
and level set methods yields a mutual benefit and achieves competitive results
on public benchmark data. The introduction of an additional region constraint
provided by the level set formulation leads to spatially coherent results while the
iterative minimization also reduces the dependence of the initial data labeling.
Nevertheless problems can be identified, which are related to the choice of the
level set parameters, in particular the weighting for the curvature term, which
is a well known problem for level set methods and open for future work. Several
extensions to the proposed method are also possible, e.g. the estimation of the
parameters on the data, incremental methods to estimate the model complexity
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Figure 2: Left: Comparison of the segmentation to the ground truth (mean and
std. dev. of pixel-wise error rates for 50 images), showing the similarity of H
as well as the similarity of the foreground segmentation and comparable results
from other state-of-the art methods. Right: Four examples (blue outline for
ground truth, red outline for the boundary of foreground segmentation). Some
problems are visible due to a wrong curvature weight ν as well as systematic
errors because of shadows occurring near the object boundary.

(number of prototypes), an integration of user-constraints or a direct extension
towards a three dimensional segmentation of video data.
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