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Abstract. We used simulated evolution to obtain continuous time recurrent 
neural networks to control the locomotion of simulated bipeds. We also used 
the definition of center-crossing networks, so that the recurrent networks nodes 
can reach their areas of maximum sensitivity of their activation functions. 
Moreover, we incorporated a run-time adaptation of the nodes' biases to obtain 
such condition. We tested the improvements and possibilities this adaptation 
adds, focusing in the use for biped robot control.  

1. Introduction and previous work 

Bipedal walking is a difficult task due to its highly unstable dynamic behavior [5]. 
Central Pattern Generators (CPGs) are pulsating collections of neurons in the spine 
that can produce rhythmic patterns of neural activity without receiving rhythmic 
inputs. They can be building blocks for the animals’ locomotion neural circuits.  

The work of Ijspeert [7] reviews different alternatives to define CPGs. Here we 
concentrate on the control of biped robots. Legged locomotion is characterized by 
cyclic activity of the limbs. The defining feature of the CPGs is a high degree of 
recurrence, which greatly biases the dynamics of the system toward cyclic activation 
patterns [9]. 

Several neural models have been used to implement CPGs. Nevertheless, as 
McHale and Husbands comment [4], although the characteristic equations associated 
with a specific network are a compact description of it, we are as yet unable to predict 
from these equations the dynamic characteristics of the network when it is embodied 
in an environmental agent. Evolutionary robotics [8] provides an alternative to the 
handmade design of robot controllers, especially for autonomous robots acting in 
uncertain and noisy domains, as artificial evolution is used to automate the design 
procedure of the controllers.   

Beer [1] introduced the model of Continuous Time Recurrent Neural Network 
(CTRNN), one of the most used as CPG. As Beer indicates “CTRNNs is a class of 
neural models that is simple but dynamically universal” [2]. The work of McHale and 
Husbands [4] presents a comparative study of three types of neural networks: the 
conventional Continuous Time Recurrent Neural network (CTRNN) [1], the Center-
crossing CTRNN [3] (explained in the next section), the Plastic Neural Network 
(PNN) [6] and the GasNet developed by the authors. The PNNs incorporated run-time 
learning through Hebbian rules and GasNets were inspired by the action of Nitric 
Oxide as a neuromodulator. The authors’ interest was to evolve networks capable of 
achieving locomotion with a simulated biped. Of the 14 distinct networks tested 
(variants of those types), continuous time recurrent networks were shown to have 
advantages in most of the cases. CTRNNs were able to attain a higher level of 
average fitness, although GasNets obtained the highest fitness peak with cyclic 
locomotion. 
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However, as exposed in [3] with a statistical analysis, if we use an evolutionary 
method to obtain networks with rhythmic behavior, the probability that a random 
network population of a moderate size (100 individuals) contains one or more 
CTRNNs exhibiting oscillatory behavior is rather small. Also, Reil and Husbands [9] 
evolved CTRNNs for a simulated biped. They showed that there is no need of 
proprioceptive information to the control of stable straight-line bipedal walking. 
Moreover, when they conducted 100 evolutionary runs, the fraction of such runs 
leading to stable walkers was only 10% (even allowing backward walking). 

Mathayomchan and Beer [3] additionally experimented with the inclusion of the 
so called center-crossing networks. These networks can produce oscillatory behaviors 
in an easier way, since their nodes’ parameters are tuned so that the neurons act in the 
activation region of maximum sensitivity. When they generated 10,000 random 
center-crossing CPGs and 10,000 completely random CPGs, they found that 26.6% of 
the center-crossing circuits produced oscillations, while only 1.2% of the random 
circuits did so. When they used an evolutionary algorithm to search for control 
oscillators of a simple biped robot, they demonstrated that relative to a random initial 
population, seeding an initial population of an evolutionary search with center-
crossing networks improved both the frequency of pulse-circuits occurring in a 
population and the speed with which high fitness pulse-circuits evolved. 

Given these results, our aim is to increase the probability to obtain oscillatory 
networks in an evolutionary search. We began with the center-crossing definition and 
we added an adaptation methodology for that purpose.  

2. Center-crossing continuous time recurrent neural networks 

In the conventional CTRNN [1] the state of a single neuron i is computed by the 
following equation: 
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where y is the state of each neuron, τ is a time constant, w is the weight of an 
incoming connection, σ is the sigmoid activation function, θ is the bias term or firing 
threshold of the node and I is an external input.  

As defined in [3], in a center-crossing CTRNN the null surfaces of all neurons 
intersect at their exact centers of symmetry. The null surface of a neuron is where the 
neuron bias and all the synaptic inputs sum to 0. This ensures that each neuron’s 
activation function is centered over the range of net inputs that it receives. 

Using a sigmoid activation function in the CTRNNs, a neuron has a firing 
frequency of 0.5 at its null surface (σ(0)=0.5). That is, center-crossing networks have 
neurons that on average have firing frequencies around this value. Hence, the center 
crossing condition occurs when the neuron biases of all neurons are set to the negative 

of the sum of the input weights divided by 2: 2
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 This means that the bias exactly counteracts the sum of all the synaptic inputs 
when the connected neurons have a frequency of 0.5. In other words, the nodes of 
such type of networks should have an average firing value of 0.5, which implies that 
neurons are in states of maximum sensitivity most of the time.  
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Small changes in synaptic inputs around the null surface can lead to a very 
different neuron firing frequency. Outside this range, the change of a net input has 
only sparse effect on the firing frequency. The richest dynamics should be found in 
the neighborhood of the center-crossing networks in parameter space and, as 
Mathayomchan and Beer indicate [3], one would expect that an evolutionary 
algorithm would benefit from focusing its search there. 

3. Bias adaptation 

The center-crossing networks can be viewed as networks of neurons of maximum 
sensitivity. It is to be expected that such networks exhibit a wider range of dynamic 
behaviors than random networks would do. Nevertheless, the use of center-crossing 
networks does not guarantee that the corresponding network generates a rhythmic 
behavior. A simple example: if we have a six-neuron CTRNN, where the incoming 
weights of a particular node are all equal to 1, then the θ threshold that corresponds 
with the center-crossing definition will be -3. However, even with that bias, if four or 
more of the input neurons are activated near the maximum values, the node will never 
be in the sensitive region and it will never present a change of its value. Even if the 
initial incoming values of the node are initialized in such a way that half of them are 
at the maximum value (or near the maximum) and half at the minimum possible 
value, in most cases the dynamic behavior of the center-crossing network ends with 
fixed temporal values in the nodes. 

Figure 1 has two examples which correspond to a center-crossing network. The 
figures show the phase plot of the time evolution of two nodes. Fig1.a and Fig1.b 
present two different dynamic behaviors depending on the initial values of the 
network nodes. In addition, most of the initializations provide fixed point attractors. 

So, the values of the inputs to the nodes must be taken into account if we want to 
force a rhythmic activation in the nodes. If we want to maintain the nodes in the 
regions of maximum sensitivity, the bias of a node i can be adapted in run-time to get 
it closer to the negative value of the input it receives (sum of all the synaptic inputs). 
Thereby, it is changed according to the following formula (ignoring external inputs): 
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where coef is a bias learning or adapting coefficient and t  is the time step used 

in the integration of Equation 1. Hence, the bias of each node is adjusted, in each 
iteration of the recurrent network, to the value that defines the center-crossing 
condition, as it is changed towards the negative value of the incoming activation at 
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Fig 1: Robustness against initial conditions. Figures a and b show the phase plot of the 
temporal activation of two nodes of a center-crossing network when it was initialized with 
different activation values in the nodes. Figures c and d show the same plot in a network with 
run-time adjusted biases. 
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time t. Thereby, all nodes will be near the regions of maximum sensitivity to induce 
activation changes. The magnitude of the learning coefficient determines how fast 
that situation is obtained. The last two examples of Figure 1 correspond to a center-
crossing network when the biases are adjusted in run-time. Independently of the initial 
conditions the trajectories fall in the same temporal limit cycle and, what is more 
important, all exhibit a limit cycle behavior with stable rhythmic patterns that can be 
useful for our purpose of coordinating the rhythmic movements of the biped limbs. 

4. Methods: Biped model and genetic algorithm 

We used a simulated biped in the experiments employing the Open Dynamics Engine 
(ODE) physics simulator [10]. The articulated structure was created when rigid bodies 
were connected together through joints: two joints linking a hip and the legs, two knee 
joints and two ankle joints. These six actuated joints have a degree of freedom and 
were simulated as torsional springs. The angular hip displacement has a range of       
[-π/6,0.75·π], whereas the range is [-0.75·π,0] for the knees joints and [-0.25·π,0] for 
the ankles. The outputs of the neural network nodes were scaled to provide a velocity 
that can reach the angle limits. The mass of each body part is proportional to its 
volume, the gravity was fixed to -9.81 m/s² and it was used a time step of 0.01s in the 
ODE simulation for each iteration in the environment. 

 We used a standard genetic algorithm (GA) for the evolution of the CPGs 
(CTRNNs) for the walking behavior. Each CTRNN is codified by a vector that 
includes the connection weights and the bias and time constants associated to each 
neuron. A population of 100 individuals was used in the different evolutionary runs. 
We used a rank-based method as selection operator: the 25% best individuals of the 
population are replicated to generate the next population. As in [3], these individuals 
were mutated with a given probability in their genes (parameters), adding them a 
random displacement whose magnitude was a Gaussian random variable with 0 mean 
and variance σ2. We included the elitist selection as the best individual is copied to the 
new population without any change. We did not use crossover operators because, as 
Reil and Husbands point out, there are “no identifiable functional units in the 
genotype and phenotype structure”, given the epistasis present in these distributed 
connectionist structures, as well as the experimental evidence on the lack of efficiency 
of crossover in this problem domain [9]. 

Finally, as in most of the previously mentioned works, we used as fitness the 
distance traveled in a straight line by the biped in a give time (8 seconds in our 
experiments). Additionally, in order to avoid grotesque movements, a penalization 
was introduced when the center of gravity felt below a certain height. We did not 
allow backward walking controllers as in [9]. 

We used fully interconnected CTRNNs as CPGs, where all the neurons were 
motor neurons to control each of the six joints. This implies 48 parameters to evolve 
(36 connection weights, 6 biases and 6 time constants). If the biases are defined 
according the central-crossing condition (or adjusted in run-time), the parameters are 
42. The connection weights and biases were constrained to lie in the range ±16 (as in 
[3] and [9]), and time constants were constrained in the range [0.5, 5], as in [9]. The 
time step for the integration of Equation 1 was 0.1s. Finally, to avoid the transient 
perturbations at the beginning of the temporal evolution of the network, each network 
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controller was iterated a given 
number of steps (~100) before 
taking the control of the biped joints. 

5. Results 

We tested the difficulty to obtain 
CTRNNs which act as CPGs to 
provide a rhythmic behavior, as well 
as the fitness obtained, with three 
strategies: (1) random genetic 
populations with random defining 
parameters of the CTRNNs, (2) 
initial populations where the weights 
and temporal constants were 
random, and the biases were defined according to the center-crossing condition, (3) 
and finally random genetic populations with random defining parameters but the 
biases were adjusted in run-time according to Equation 3. Figure 2 summarizes the 
results of the evolutions with the GA. The quality evolutions are the average result of 
50 different runs of the GA with different initial populations. The number of 
individuals was 100 in all those tests.  

Mathayomchan and Beer [3] tested the seeding of the initial population with 
center-crossing CTRNNs on a walking task in a simple legged body. The authors 
demonstrated that center-crossing seeded searches evolved more reliably high-fitness 
circuits. They obtained the greatest difference, regarding to an initial random 
population, with a mutation variance σ2 of 0.05, while the difference decreases with 
increasing values of σ2. 

The same σ2 of 0.05 was used in the evolutions of Figure 2. As it was expected, 
with the seeded initial populations with center-crossing NNs, the evolutionary 
algorithm obtained better CTRNNs that provided the required cyclic behavior. The 
average quality indicates the larger number of possible networks with such behavior 
with respect to a random population of CTRNNs. Once oscillations are discovered, 
the evolutionary algorithm can fine-tune them into highly fit CPGs by matching the 
amplitude, period and phase of the oscillation to the characteristics of the body model. 

With the use of the run-time adaptive biases all the individuals (adaptive 
CTRNNs) of the genetic population present a rhythmic behavior. It is likely that most 
of such cyclic behaviors are not adequate to the locomotion control, as the average 
fitness at the initial generation indicates. Nevertheless, the genetic algorithm has more 
NNs to fine-tune, so it obtains higher fitness controllers and in fewer generations.  

Figure 3 shows several steps of the swing and stand phases of the legs of two 
evolutionary obtained CTRNNs which use run-time bias adaptation. The first one was 
obtained with the robot on a flat surface (coef=0.005) and the second one with it on a 
slope (coef=0.01). The figure shows one cycle of the repetitive activation of the nodes 
that control the hip joints (continuous lines) and the knees (dashed lines), defining the 
swing and stand phases (the activation of the ankles are not shown for clarity). In 
addition, the coefficient for bias adaptation of Eq. 3 determines how fast each node is 
set to the center-crossing condition. So, higher values in the coefficient can force 

Fig 2: Evolution of the quality of the best individual 
and the average quality of the population for three 
different conditions: random CTRNNs (1), initial 
center-crossing CTRNNs (2) and run-time adapted 
center-crossing CTRNNs (3). The quality curves are 
an average of 50 different runs of the GA. 
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cyclic behaviors with shorter periods, and vice versa. Hence, the rhythm of the 
locomotion behavior can be adjusted dynamically, providing a form of external 
control. The videos of the behaviors of Fig. 3 and several videos with such control by 
the coefficient can be downloaded from [11].  

Conclusions 

We used CTRNNs as controllers in simulated bipeds. A GA obtains the optimized 
networks for the required locomotion behavior. The use of the center-crossing 
condition with the incorporation of adaptive biases allowed a faster evolution of the 
networks with the necessary rhythmic activation patterns. In addition, the controllers 
presented a higher fitness regarding to non-adaptive center-crossing networks. The 
next step in our work is the modulation of network rhythmic activation through the 
bias adaptation methodology, so the network will be able to automatically adjust its 
cyclic behavior to the current surface it detects. 

Acknowledgements: this paper has been funded by the Ministry of Science and 
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Fig 3: Several steps in the swing and stand phases of the locomotion behavior on a flat 
surface and on a slope. The right figures show the rhythmic activation of the network nodes 
that directly control the hip joints (continuous lines) and knees joints (dashed lines). 
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