
Random Search Enhancement of Error
Minimized Extreme Learning Machine

Yuan Lan1, Yeng Chai Soh2 and Guang-Bin Huang3

1, 2, 3 - Nanyang Technological University - School of Electrical and Electronic Engineering
- {lany0001, eycsoh, egbhuang}@ntu.edu.sg - Singapore

Abstract. Error Minimized Extreme Learning Machine (EM-ELM) pro-
posed by Feng et al. [1] can automatically determine the number of hidden
nodes in generalized Single-hidden Layer Feedforward Networks (SLFNs).
We recently found that some of the hidden nodes that are added into the
network may play a very minor role in the network output, which increases
the network complexity. Hence, this paper proposes an Enhancement of
EM-ELM (referred to as EEM-ELM), which introduce a selection phase
based on the random search method. The empirical study shows that
EEM-ELM leads to a more compact network structure.

1 Introduction

Recently, Feng et al [1] provided a incremental approach referred to as Error
Minimized Extreme Learning Machine (EM-ELM) based on the Extreme Learn-
ing Machine (ELM) [2, 3, 4, 5]. EM-ELM is a simple and efficient incremental
learning algorithm for generalized SLFNs and can determine the number of hid-
den nodes automatically that may not be neural alike. It adds random hidden
nodes to SLFNs one-by-one or group-by-group with fixed or varying group size.
Then the output weights of the network are updated incrementally during the
network growth, which dramatically reduces the computational complexity. It
has been proved that EM-ELM is convergent in theory. However, we recently
investigated that some of the hidden nodes in EM-ELM network may play a very
minor role in the network output, which may increase the network complexity.
And we realize that there is not any selection of the hidden nodes before they
are added to the EM-ELM network.

In this paper, we propose an Enhancement of EM-ELM (referred to as EEM-
ELM), which introduces a selection phase based on the random search method.
At each incremental learning step, several hidden nodes are randomly generated
and the hidden node that leads to highest residual error reduction will be added
into the network, and then the output weights are updated incrementally in the
same way of original EM-ELM. The empirical study shows that EEM-ELM leads
to a more compact network structure.

2 Review of EM-ELM

EM-ELM is an error minimization based method in which the number of hid-
den nodes can grow one-by-one or group-by-group until optimal. The approach

327

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

can significantly reduce the computational complexity and its convergence was
proved as well. In this paper, we only consider the one-by-one incremental mode.

Assume we have a set of training data {(xi, ti)}N
i=1, the maximum number of

hidden nodes Lmax, and the expected learning accuracy ε. There are two phases
in EM-ELM algorithm.
Initialization Phase

1. Randomly generate a hidden node (a1, b1), where a and b are the param-
eters of hidden node. And set j = 0 and L0 = 1.

2. Calculating the hidden layer output matrix: h0

h0 =
[

G(a1, b1,x1) · · · G(a1, b1,xN)
]T (1)

where G(x) is the activation function and G(a1, b1,xi) denotes the output
of the hidden node w.r.t input xi.

3. Calculating the corresponding output error E(h0) = ‖h0h
†
0t − t‖.

Recursively Growing Phase:
while Lj < Lmax and E(Hj) > ε

1. Randomly add a hidden node to the existing SLFNs. The number of
hidden nodes Lj+1 = Lj + 1 and the corresponding hidden layer output
matrix Hj+1 = [Hj δhj], where δhj is shown below.

δhj =
[

G(aLj+1, bLj+1,x1) · · · G(aLj+1, bLj+1,xN)
]T (2)

2. Updating the output weight β [6]

Dj =
δhT

j (I − HjH
†
j)

δhT
j (I − HjH

†
j)δhj

Uj = H†
j − H†

jδhjDj

β(j+1) = H†
j+1t =

[
Uj

Dj

]
t

(3)

3. j = j + 1.

endwhile

3 Proposed enhancement of EM-ELM (EEM-ELM)

In EM-ELM, the hidden nodes are randomly generated and added to the network
sequentially. During the study of EM-ELM, we investigate that some newly
added hidden nodes may be more efficient in reducing the residual error as

328

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

compared to other hidden nodes. Hence, we propose an Enhancement of EM-
ELM (referred to as EEM-ELM) by applying random search method. In EEM-
ELM, the hidden node is added to the network one-by-one. At each incremental
learning step, k hidden nodes are randomly generated and the hidden node that
leads to highest residual error reduction will be added to the network, and then
the output weights are updated incrementally in the same way of original EM-
ELM. The EEM-ELM can be summarized as follows:
EEM-ELM Algorithm: Given a a set of training data {(xi, ti)}N

i=1, activation
function G(x), maximum number of hidden nodes Lmax allowed to add into the
network, number of hidden nodes k for selection in each step, and the expected
learning accuracy ε.
Initialization step: Let the number of hidden nodes in the network L = 0,
step j = 0 and the initial residual error is equal to the target t.
Incremental learning step:
while Lj < Lmax and E(Hj) > ε

• Let Lj+1 = Lj + 1.

• for i = 1 : k

1. Generate one random hidden node (ai, bi) and add it to the existing
network, where ai and bi are parameters of the ith hidden node that is
generated for selection. The number of hidden nodes is Lj+1, and the
corresponding hidden layer output matrix Hi

j+1 = [Hj δhi
j], where

δhi
j =

[
G(ai

Lj+1, b
i
Lj+1,x1) · · · G(ai

Lj+1, b
i
Lj+1,xN)

]T
.

2. Update the output weight βi

Dj =
δhiT

j (I − HjH
†
j)

δhiT
j (I − HjH

†
j)δh

i
j

Uj = H†
j − H†

jδh
i
jDj

β
(j+1)
i = Hi†

j+1t =
[

Uj

Dj

]
t

(4)

3. Calculate the corresponding output error Ei(Hi
j+1) = ‖Hi

j+1β
(j+1)
i −

t‖.
endfor

• Let i∗ = {i|min1≤i≤k ‖Ei‖}. Hence, hidden node (ai∗ , bi∗) leads to highest
error reduction and is added to the network. And then set E = Ei∗ ,
aLj+1 = ai∗ , bLj+1 = bi∗ , and β(j+1) = βi∗ .

• j = j + 1.

endwhile

329

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

4 Performance Evaluation of EEM-ELM

In this section, the performance of EEM-ELM is evaluated on the benchmark
problems described in Table 1, which includes six applications [7]. We com-
pare the results of EEM-ELM with EM-ELM [1], ELM [2] and OP-ELM [8, 9]
algorithms.

Table 1: Specification of Benchmark Datasets

Training # Testing
Datasets # Attributes #Classes Data Data
Abalone 8 - 2000 2177
Auto-MPG 7 - 200 198
Boston Housing 13 - 250 256
Machine CPU 6 - 100 109
Image Segmentation 19 7 1210 1100
Satellite Image 36 6 3217 3218

In our simulations, data normalization has been done the same as in [1].
Twenty trials of simulations were conducted for each applications with EEM-
ELM, EM-ELM, ELM and OP-ELM algorithms. The activation function used
in the comparison was the sigmoidal additive activation function G(a, b,x) =
(1)/(1 + exp(−(a · x + b))) for EEM-ELM, EM-ELM and ELM. For OP-ELM,
the activation function used was Gaussian function. The network structures of
ELM networks have been determined by trial and error method with grid search
technique.

4.1 Comparison of EEM-ELM and EM-ELM with the same expected
accuracy

We compare the network structure obtained by both EEM-ELM and EM-ELM
with the same stopping RMSE for regression cases and stopping rate for classi-
fication cases. Table 2 shows the network structure and generalization perfor-
mance of both EEM-ELM and EM-ELM network for all six applications. In this
section, we only compare the performance between EM-ELM and EEM-ELM
with k = 10 (denoted EEM-ELM(10)).

From the table, it shows that with comparable generalization performance,
EEM-ELM(10) always has lower network complexity as compared to EM-ELM.
While, it is obvious that both EM-ELM and EEM-ELM lead to smaller network
than original ELM. In addition, the testing standard deviation (Std dev) of EEM-
ELM(10) is better than or comparable with EM-ELM, which shows the stability
of EEM-ELM. Fig. 1 shows the performance comparison of EEM-ELM(10) and
EM-ELM with sigmoidal additive nodes on Abalone case. To achieve the same
testing RMSE (0.08), EM-ELM needs 12 hidden nodes, while EEM-ELM(10)
only needs 7 hidden nodes. Similar curves could be found for other applications.

330

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

0 5 10 15 20 25 30
0.075

0.08

0.085

0.09

0.095

0.1

0.105

Number of hidden nodes added

T
es

tin
g

R
M

S
E

EM−ELM
EEM−ELM

12th node

7th node

Fig. 1: Performance comparison of EEM-
ELM(10) and EM-ELM with sigmoidal additive
hidden nodes on Abalone case

0 5 10 15 20 25 30 35 40 45 50
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Number of nodes added

T
es

tin
g

R
M

S
E

k=1
k=5
k=10
k=20

Fig. 2: Performance comparison of EEM-ELM
with different values of k with sigmoidal additive
hidden nodes on Boston Housing case

4.2 Effect of factor k

In this section, the effect of number of hidden nodes generated for selection k
is studied. From Table 2, we compare the performance between EEM-ELM(10)
and EEM-ELM with k = 20 (denoted EEM-ELM(20)). The table shows that
EEM-ELM(20) achieves comparable generalization performance with even more
compact network structure. And EEM-ELM(20) is stable according to the test-
ing standard deviation. Fig. 2 shows the performance of EEM-ELM with dif-
ferent values of k with sigmoidal additive nodes on Boston Housing case. The
conclusion above is further proved in Fig. 2.

5 Conclusion

This paper proposes an enhancement of EM-ELM (referred to as EEM-ELM),
which introduces a selection phase based on the random search method. Unlike
in original EM-ELM, at each incremental learning step, several hidden nodes
are randomly generated and the hidden node that leads to highest residual error
reduction will be added to the network. Empirical studies show that EEM-ELM
with a much smaller network can achieve better or similar performance as that
of EM-ELM for the six cases we studied, and EEM-ELM is faster and achieves
more compact network as compared to OP-ELM for regression cases (OP-ELM
toolbox does not support the multi-class classification cases. Hence, there is no
result shown for two classification cases).

References

[1] G. R. Feng, G.-B. Huang, Q. P. Lin, and R. Gay. Error minimized extreme learning
machine with growth of hidden nodes and incremental learning. IEEE Transactions on
Neural Networks, 20(8):1352–1357, 2009.

[2] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: Theory and appli-
cations. Neurocomputing, 70:489–501, 2006.

[3] G.-B. Huang, L. Chen, and C.-K. Siew. Universal approximation using incremental con-
structive feedforward networks with random hidden nodes. IEEE Transactions on Neural
Networks, 17(4):879–892, 2006.

331

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

Table 2: Performance comparison between EEM-ELM, EM-ELM ELM and OP-
ELM (Trial&Error time is the total time spent in determining the network structure of ELM
network. Training time is the average time spent on each round of simulation. #Nodes for OP-ELM
is the maximum number of nodes for selection)

Datasets Trial&Error Training Testing Testing
(Stop RMSE) Algorithms(k) #Nodes Time (s) Time (s) RMSE Std dev

ELM 35 411.0625 0.0164 0.0772 0.0017
Abalone EM-ELM(1) 11.7 0.0148 0.0804 0.0028
(0.08) EEM-ELM(10) 7.1 0.0563 0.0802 0.0027

EEM-ELM(20) 6.5 0.0992 0.0802 0.0023
OP-ELM 100 3.5898 0.0783 0.0031

ELM 25 38.2813 0.0016 0.0788 0.0047
Auto-MPG EM-ELM(1) 19.55 0.0109 0.0798 0.0055
(0.07) EEM-ELM(10) 14.65 0.057 0.0787 0.0056

EEM-ELM(20) 13.1 0.0898 0.0784 0.0045
OP-ELM 100 0.2625 0.0821 0.0080

Boston ELM 50 77.2188 0.0047 0.1007 0.0115
Housing EM-ELM(1) 49.95 0.025 0.1058 0.016
(0.07) EEM-ELM(10) 30.7 0.1234 0.0978 0.0108

EEM-ELM(20) 26.2 0.207 0.0973 0.0124
OP-ELM 100 0.2969 0.0901 0.0086

Machine ELM 10 18.7188 0.0008 0.0689 0.0189
CPU EM-ELM(1) 13.9 0.0031 0.0861 0.061
(0.03) EEM-ELM(10) 9.05 0.0313 0.0728 0.0301

EEM-ELM(20) 8.55 0.057 0.0746 0.0438
OP-ELM 50 0.0437 0.0764 0.0181

Datasets Trial&Error Training Testing Testing
(Stop Rate) Algorithms(k) #Nodes Time (s) Time (s) Rate Std dev

Image ELM 210 815.6875 0.1953 94.83% 0.0057
Segmentation EM-ELM(1) 92.6 0.7477 93.03% 0.0108
(90%) EEM-ELM(10) 69.6 4.6758 93.26% 0.0077

EEM-ELM(20) 60.9 8 92.82% 0.0081

Satellite ELM 520 4328.3 2.9648 89.26% 0.0036
Image EM-ELM(1) 165 4.9172 87.64% 0.0065
(90%) EEM-ELM(10) 126.6 30.4555 87.49% 0.0056

EEM-ELM(20) 117.25 54.1523 87.23% 0.0046

[4] G.-B. Huang and L. Chen. Enhanced random search based incremental extreme learning
machine. Neurocomputing, 71:3060–3068, 2008.

[5] G.-B. Huang and L. Chen. Convex incremental extreme learning machine. Neurocomputing,
70:3056–3062, 2007.

[6] R. E. Cline. Representations for the generalized inverse of a partitioned matrix. Journal
of the Society for Industrial and Applied Mathematics, 12(3):588–600, 1964.

[7] A. Asuncion and D. J. Newman. UCI machine learning repository, 2007.

[8] Y. Miche, A. Sorjamaa, and A. Lendasse. OP-ELM: Theory, experiments and a toolbox.
In V. Kurková, R. Neruda, and J. Koutník, editors, LNCS - Artificial Neural Networks
- ICANN 2008 - Part I, volume 5163/2008 of Lecture Notes in Computer Science, pages
145–154. Springer Berlin / Heidelberg, September 2008.

[9] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse. OP-ELM:
Optimally-pruned extreme learning machine. IEEE Transactions on Neural Networks,
to appear.

332

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

