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Abstract. The generative topographic mapping (GTM) has been pro-
posed as a statistical model to represent high dimensional data by means of
a sparse lattice of points in latent space, such that visualization, compres-
sion, and data inspection become possible. Original GTM is restricted to
Euclidean data points in a vector space. Often, data are not explicitly em-
bedded in a Euclidean vector space, rather pairwise dissimilarities of data
can be computed, i.e. the relations between data points are given rather
than the data vectors themselves. We propose a method which extends
the GTM to relational data and which allows to achieve a sparse repre-
sentation of data characterized by pairwise dissimilarities, in latent space.
The method, relational GTM, is demonstrated on several benchmarks.

1 Introduction

More and more electronic data become available in virtually all areas of life in-
cluding, for example, biomedical domains, robotics, the web, or multimedia ap-
plications, such that powerful data mining tools are needed to support humans
to inspect and interpret this information. Also, rapidly increasing technology
such as improved sensor technology and advanced methods of data preprocess-
ing and data storage make the data more and more complex, concerning data
dimensionality and information content contained in the representation. There-
fore, often, a simple comparison of data in terms of the Euclidean norm and a
standard representation by means of Euclidean vectors is no longer appropri-
ate to capture the relevant aspects of the data. Rather, dissimilarity measures
which are adjusted to the data type and application area at hand should be
used, including, for example, alignment distances for genomic sequence analy-
sis in bioinformatics, the compression distance to compare texts, or structure
kernels to compare complex graphs and tree structures.

Classical data mining tools such as the self-organizing map (SOM) or its
statistical counterpart, the generative topographic mapping (GTM) provide a
sparse representation of high-dimensional data by means of latent points ar-
ranged in a low-dimensional neighborhood structure which is useful for visual-
ization. However, they have been introduced for Euclidean vectors only [9, 1].
Several extensions of SOM to the more general setting of data characterized
by pairwise relations only, have been proposed, including median SOM which
restricts prototype locations to data points [10], online and batch SOM using a
kernelization of the classical approach [2, 13], and methods which rely on deter-
ministic annealing techniques borrowed from statistical physics [5]. For GTM, a
complex noise model as proposed in [12] allows the extension of the method to
discrete structures such as sequences.

Recently, an intuitive extension of SOM to dissimilarity data has been pro-
posed in [7] which relies on techniques as introduced in [8]: assume that only
a dissimilarity matrix characterizes the data and an explicit vectorial represen-
tation is unknown. If prototypes have the special form of convex combinations
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of data points, classical SOM can be computed indirectly by adapting the co-
efficient vectors without any explicit reference to the underlying vector space
or a formula of the dissimilarity measure. The resulting algorithm, relational
SOM, arrives at a sparse representation of dissimilarity data in terms of virtual
prototypes represented by coefficient vectors.

In this contribution, we extend this principle to GTM. For this purpose,
we use the trick of an indirect representation of prototypes in the image space
in terms of convex combinations of data points and the associated possibility
to compute distances in the space without an explicit reference to the vector
representation of points. We show that an EM algorithm can be derived to
obtain the parameters of the model by maximizing the data log-likelihood. The
efficiency and feasibility of this method, relational GTM, is demonstrated on
several benchmark data sets given by dissimilarity matrices.

2 The generative topographic mapping

The GTM [1] provides a generative stochastic model of data x € R? which is
induced by a mixture of Gaussians with centers induced by a regular lattice
of points w in latent space. These are mapped to prototypical target vectors
w — t = y(w, W) in the data space, where the function y is parameterized
by W, e.g. a generalized linear regression model ®(w) - W induced by base
functions ® such as equally spaced Gaussians with bandwidth ¢. Every latent
point induces a Gaussian distribution

3 D/2 3 ,
p(X|W,W,ﬁ) =\52 exXp ——HX—y(W,W)H (1)
21 2
with bandwidth £, which generates a mixture of K modes
K
p(X[W,8) = p(wi)p(x|wi, W, 8) (2)
k=1

where p(wy,) is often chosen as uniform distribution. GTM training optimizes
the data log-likelihood

In <H <ZP(Wk)P(Xn|Wk,Wa5)>> 3)

n=1 \k=1

with respect to W and 8. This can be done by means of an EM approach which
treats the generative mixture component wy for a data point x, as hidden
parameter. Choosing a generalized linear regression model and uniform distri-
bution of the latent points, EM training in turn computes the respounsibilities

Ri(W. ) = plowix W, ) = Lo S ARy

of component k for point number n, and the model parameters by means of the
formulas

PG ®PW! = PR, 4X (5)
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for W where ® refers to the matrix of base functions, X to the data points, R to
the responsibilities, and G is a diagonal matrix with accumulated responsibilities
Gnn =Y, Rin(W, B). The bandwidth can be computed by solving
1 p—
ﬂnew

1
ND Z Rin(Wold, Botd) |2 (Wi) Wiew — Xn [|? (6)
k,n

where D is the data dimensionality and N the number of data points.

3 Relational GTM

We assume that data x are given only indirectly in terms of pairwise dissimi-
larities d;; = ||x; — x;]|?, but the vector representation of the data is unknown.
Thus, for general prototypes t, the probability (1) cannot be computed, nor is it
possible to determine prototypical targets at all, if no embedding vector space is
known. In [8], the following fundamental observation is presented: assume that
prototypes are restricted to convex combinations of data points, i.e.

N N
t, = Z OknXy Where Z O =1 (7)
n=1 n=1

Then, the prototypes t; can be represented indirectly by means of the coefficient
vector aj and, further, distances of data points and prototypes can be computed
as in [8]

1
1%n — tel|* = [Dag]n — 3 a;Day, (8)

where D refers to the matrix of pairwise dissimilarities of data points and [-]; is
component ¢ of the vector. This observation has been used in [7] to derive a rela-
tional variant of SOM. We show, that the same principle allows us to generalize
GTM to relational data described by a dissimilarity matrix D. We restrict pro-
totype vectors ty to the convex hull of data points and represent those in terms
of coefficient vectors ay. Hence, we can directly treat the mapping of latent
points to prototype points as mapping of the latent space to the coefficients:

y:iwg = ap=0(wg) W (9)

where @ refers to base functions such as equally spaced Gaussians with band-
width o in the latent space. To apply (8), we set the restriction

> [®(wr) Wi, =1 (10)

n

This way, the likelihood function (3) can be computed based on (1) where the
distance computation can be performed indirectly using (8). As for GTM, we
can use an EM optimization scheme to arrive at solutions for the parameters
B and W, where, again, the mode wy, responsible for data point x,, serves as
hidden parameter. An EM algorithm in turn computes the respounsibilities (4)
using the distance (8), and it optimizes the expectation

Z Ry, (Wold; Bold) In P(Xn|Wk, Wiew, Bnew) (11)
k,n
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with respect to W and 8 under the constraint (10). Lagrange optimization with
Lagrange multiplier uj for component t; leads to the equation

BPT Gola®Wew — B8 RolaX + @7 11y v =0 (12)

where 1, 1 denotes a @ X L matrix with entries 1, ® is the matrix of base func-
tions evaluated at the data points, p is the vector of Lagrange multipliers, and
the remaining symbols refer to the corresponding matrices as introduced above.
After algebraic manipulations of (12), it follows that the Lagrange multipliers
vanish. Hence the model parameters can be determined in analogy to (5,6). We
refer to this method as relational GTM (RGTM).

Initialization uses a MDS projection of the dissimilarities to two dimensional
points A. This induces the two primary coefficients of the unit vectors in the
space of convex combinations in RY. The weights W should be initialized such
that the latent grid is mapped to the two-dimensional manifold spanned by these
components. Since this hyperplane is going through the origin, 1/N should be
added to the linear component of W. Normalizing the matrix such that there
are no negative coefficients, we compute ®W = XAT /(N max;;(|[XAT];;])),
and add 1/N afterwards.

4 Experiments

First, we test RGTM on several benchmark dissimilarity data sets as introduced
in [3, 6]: cat cortex (65 data points and 4 classes), patrol data (241 points, 8
classes), voting data (435 samples, 2 classes), protein data (226 points, 5 classes),
aural sonar (100 points, 11 classes); in each case, a symmetric dissimilarity
matrix with zero diagonal is given representing a problem-adapted measurement
of the dissimilarity of data points.

Since these data sets are labeled, it is possible to evaluate the result by the
classification error obtained by posterior labeling. Thereby, posterior labeling of
RGTM takes place based on the majority label of the accumulated responsibility
of a latent point for data points carrying this label. We report the results of
a repeated cross-validation with ten repeats, where we use 2 folds for the cat
cortex data and aural sonar data and 10 folds for the other data sets to maintain
comparability with the results from [6]. For cross-validation, out of sample
extensions of the assignments can be computed the same way as for relational
neural gas, see [6]. In all cases, we use 100 latent points and 4 base functions
given by Gaussians. This global parameter setting was optimized with regard
to all data sets. The initial £, which determines the bandwidth of the base
functions, has only a slight effect on the algorithm, if it stays in a reasonable
interval. Here, the number of base functions is chosen as small as possible
to preserve the topology of the data. Changing the number of latent points
generally changes only the sampling of the data but the shape of the map stays
the same. So with a smaller number, the algorithm is faster and sparsity of
the representation is increased; with a larger number, the algorithm is slower
but more details in data relations can be discovered. The classification accuracy
obtained on the test set is depicted in Tab. 1. For comparison, we report the
classification accuracy of deterministic annealing (DA) and relational neural gas
(RNG) as presented in [6]. Obviously, RGTM is always competitive to these two
alternatives and it is even better for three of the five classification tasks. Hence
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RNG DA RGTM
cat cortex | 0.698 (0.076) 0.803 (0.083) 0.863 (0.027)
proteins | 0.919 (0.016) 0.907 (0.008) 0.938 (0.008)
aural sonar | 0.834 (0.014) 0.856 (0.026) 0.849 (0.030)
patrol 0.665 (0.024) 0.521 (0.051) 0.714 (0.034)
voting 0.950 (0.004) 0.951 (0.005) 0.942 (0.009)

Table 1: Classification results on the data sets obtained by a repeated cross
validation, the standard deviation is given in parenthesis.

RGTM offers a feasible alternative to DA and RNG, where RGTM has at least
the same capacity, but it is based on an explicit statistical model and displays
rapid convergence of the algorithm since it is based on a fast EM scheme.

To demonstrate the visualization features of RGTM, we show the topographic
mapping for a dissimilarity data set of classical music similar to [11]. It is com-
prised of pairwise dissimilarities between 1068 sonatas from the classical period
(by Beethoven, Mozart and Haydn) and the baroque era (by Scarlatti and Bach).
The musical pieces were given in the MIDI file format, taken from the online
MIDI collection Kunst der Fuge'. Their mutual dissimilarities were measured
with the normalized compression distance (NCD), see [4], using a specific prepro-
cessing, which provides meaningful invariances for music information retrieval.
This method uses a graph-based representation of the musical pieces to construct
reasonable strings as input for the NCD, see [11]. On this data, the RGTM was
trained using 400 latent points and 4 base functions. Since there is no ground
truth for this kind of musical dissimilarity measure, no precise interpretation and
evaluation of the results is possible. Still, the visualization features of RGTM
can be demonstrated in comparison to the existing RSOM, as seen in Fig. 1.

5 Conclusions

In this contribution, the generative topographic mapping has been extended
towards data given by a dissimilarity matrix rather than Euclidean vectors. The
resulting algorithm, relational GTM, can be used directly on the dissimilarity
matrix. It has been demonstrated in the experiments that RGTM provides a
reasonable topographic mapping of the data which is at least competitive if not
superior to alternatives such as deterministic annealing and relational neural gas
while providing an explicit stochastic model.

Note that RGTM leads to a sparse representation of data in terms of a set of
latent points in latent space together with a prescription of how this generates
a probability distribution in data space. Unlike standard GTM, however, the
targets of latent points in the data space (the prototypes) are given only indi-
rectly through vectors of coefficients, which are not sparse. In [6], approximation
schemes have been proposed in the context of relational neural gas which, on
the one hand, result in a sparse representation of prototypes, on the other hand,
allow a patch processing of huge dissimilarity matrices for which the compu-
tational load would otherwise be too big. This way, the resulting topographic
mapping scheme is linear in the number of data points. The transfer of this
method to RGTM is subject of ongoing research.

Thttp://www.kunstderfuge.com
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Fig. 1: RGTM (left) and RSOM (right) visualization of classical and baroque
sonatas by Beethoven (102), Haydn (172), Mozart (147), Bach (92), and Scar-
latti (555). The grid points are marked using posterior labeling. The RGTM
grid shows a noticeable separation of the musical pieces by composer and epoch,
where mostly the comprehensive work of Bach marks a blend between the clas-
sical and baroque era. The shown arrangement seems meaningful since Bach’s
work is considered influential for both musical eras. Also the distinct style of
Scarlatti is represented. In the grid on the right, generated with RSOM (trained
in 500 epochs with an initial neighborhood range of 40 on the same data set)
the separation of the composers is less distinct.

*
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