
Divergence based Learning Vector Quantization

E. Mwebaze1,2, P. Schneider2, F.-M. Schleif3, S. Haase4, T. Villmann4, M. Biehl2

1 – Faculty of Computing & IT, Makerere Univ., P.O. Box 7062, Kampala, Uganda
2 – Johann Bernoulli Inst. for Mathematics and Computer Science, Univ. of Groningen

P. O. Box 407, 9700AK Groningen, The Netherlands
3 – Computational Intelligence Group, University of Leipzig

Semmelweisstr. 10, 04103 Leipzig, Germany
4 – Department of MPI, University of Applied Sciences,

Technikumplatz 17, 09648 Mittweida, Germany

Abstract. We suggest the use of alternative distance measures for sim-
ilarity based classification in Learning Vector Quantization. Divergences
can be employed whenever the data consists of non-negative normalized
features, which is the case for, e.g., spectral data or histograms. As ex-
amples, we derive gradient based training algorithms in the framework of
Generalized Learning Vector Quantization based on the so-called Cauchy-
Schwarz divergence and a non-symmetric Renyi divergence. As a first test
we apply the methods to two different biomedical data sets and compare
with the use of standard Euclidean distance.

1 Introduction

Learning Vector Quantization (LVQ) provides a widely used family of algorithms
for distance based classification. LVQ systems are very flexible, easy to imple-
ment, and applicable to multi-class problems in a straightforward fashion. Be-
cause LVQ prototypes are determined in the feature space of observed data, the
resulting classifiers can be interpreted intuitively.

The choice of an appropriate distance measure is crucial for the success
of LVQ training and classification. Most practical prescriptions make use of
Minkowski, e.g. Euclidean metrics or adaptive versions thereof as in relevance
learning [1, 2, 3, 4].

Here we will consider alternatives which are applicable in the presence of non-
negative, normalized feature vectors. Restricting the prototypes accordingly,
divergences can be employed as dissimilarity or distance measures. We will
discuss two specific examples which belong to different families of divergences.

Information theoretic distance measures have been discussed in the context
of various machine learning frameworks, previously. This includes prototype
based clustering and classification, see [5, 6, 7, 8] for just a few recent examples.
Frequently, divergences are employed to quantify the similarity of the prototype
density with the observed distribution of data. Note that, here, we employ diver-
gences to quantify the distance between individual feature vectors and prototype
vectors, both of which are interpreted as probability distributions. Moreover, we
derive gradient based update schemes which exploit the differentiability of the
divergences.

After detailing the framework, we discuss two examples of potentially useful
divergence measures, one of which is non-symmetric. The mathematical aspects
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have been presented in greater detail in a recent technical report [9]. As a proof
of concept and in order to obtain first insights, we employ the corresponding
divergence based GLVQ schemes to two example data sets and compare with
the standard scheme which is based on the Euclidean measure.

2 Introduction of divergence based GLVQ

In the following we assume that a set {xµ, yµ}
P

µ=1
of example data is given. Here

xµ ∈ IRN and the labels yµ ∈ {1, 2, . . . C} correspond to one of the classes. An

LVQ system W = {(wj , c(wj)}
M

j=1
comprises a number M of N -dim. prototype

vectors wj which carry labels c(wj) ∈ {1, 2, . . . C}.
Given a distance measure d(x,w), the LVQ classifier employs a Winner-

Takes-All scheme: an arbitrary input x is assigned to the class c(wL) of the
closest prototype with d(x,wL) ≤ d(x,wj) ∀j.

LVQ training can follow heuristic ideas as in Kohonen’s original LVQ1 [10]. A
variety of modifications has been suggested, a prominent example being the cost
function based Generalized Learning Vector Quantization (GLVQ) [11]. We will
employ the latter as an example framework in which we introduce and discuss
divergence based LVQ. We would like to point out, however, that differentiable
measures can be employed more generally in a large variety of cost-function
based or heuristic training prescriptions.

GLVQ training is guided by the optimization of a cost function of the form

E(W ) =
∑

µ

Φ

(

d(xµ,wJ ) − d(xµ,wK)

d(xµ,wJ ) + d(xµ,wK)

)

, (1)

where wJ denotes the closest correct prototype with c(wJ ) = yµ and wK is the
closest incorrect prototype (c(wK) 6= yµ). Note that the argument of Φ in Eq.
(1) is restricted to the interval [−1,+1]. While Φ is in general a non-linear (e.g.
sigmoidal) function, we consider here the simple case Φ(x) = x.

In stochastic gradient descent, a randomly selected example x is presented
and the corresponding winners wJ ,wK are updated incrementally by

∆wJ =
−η dK(x)

(dJ (x) + dK(x))
2
∇JdJ(x) , ∆wK =

+η dJ (x)

(dJ(x) + dK(x))
2
∇KdK(x)

(2)
where dL(x) = d(x,wL) and ∇L denotes the gradient with respect to wL. The
so-called learning rate η controls the step size of the algorithm.

Practical prescriptions are obtained by inserting a specific dissimilarity d(x,w)
and its gradient. Obviously, the same measure should be used in the working
phase of the LVQ system for nearest prototype identification. Meaningful dis-
similarities should satisfy the conditions d(x,w) ≥ 0 for all possible vectors x,w
and d(x,w) = 0 for w = x. Note that in the LVQ framework it is not necessary
to require metric properties such as symmetry. Both, in training and working
phase only distances between data and prototype vectors have to be evaluated,
distances between two prototypes or two feature vectors are never used.
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In the following we assume that the data consists of feature vectors of non-
negative components xj ≥ 0 which are normalized to

∑N

j=1
xj = 1. In other

words, the xj could be interpreted as probabilities. This interpretation could
be only formal but is natural in many cases, for instance if the data comprises
vectors x which represent histograms or spectra. A prominent example for the
former is the characterization of images by normalized gray value or color his-
tograms. Frequently, spectral data is conveniently normalized to constant total
intensity and is employed for classification in a large variety of fields including
remote sensing or bioinformatics. Assuming normalized non-negative data sug-
gests immediately the consideration of prototype vectors which satisfy the same
constraints: wj ≥ 0 and

∑N

j=1
wj = 1.

Under the above assumptions, information theory provides a multitude of
potentially useful dissimilarity measures. Different classes of divergences and
their potential use in prototype based training are discussed in [9]. Here, we
consider a couple of specific examples and compare with a standard choice:

a) Squared Euclidean distance

deu(x,w) =
1

2
(x − w)2,

∂deu(x,w)

∂ wk

= −(xk − wk) (3)

b) Cauchy-Schwarz divergence (as introduced in [12]):

dcs(x,w) =
1

2
log

[

x2w2
]

− log xT w,
∂dcs(x,w)

∂ wk

=
wk

w2
−

xk

xT w
(4)

c) Renyi divergence (α = 2) [13]

dre(x,w) = log
∑

j

x2

j

/

wj ,
∂dre(x,w)

∂ wk

=
−x2

k/w2

k
∑

j x2

j/wj

(5)

Please note that the general definition of Renyi divergence contains a parameter
α [13]. Here we focus on the particularly convenient case α = 2 which yields the
definition (5).

While the Euclidean (3) and Cauchy-Schwarz (4) dissimilarities are sym-
metric, the Renyi divergence is not: dre(x,w) 6= dre(w,x). We have chosen
dre(x,w) as given in (5), because it avoids difficulties which would result from
zero feature values xj = 0 in dre(w,x). In principle, the same problems arise for
small or zero prototype components in (5) but, in contrast to the data, we can
impose additional constraints on the wj , e.g. of the type wj ≥ c > 0. Note that
the gradient according to the CS divergence, Eq. (4), is robust with respect to
single small feature values or prototype components.

3 Computer Experiments

Two different clinical data sets are used to show the capabilities of the algorithm:
the Wisconsin Breast Cancer data set (WBC) from the UCI data repository [14]
and the lung cancer data set (LC) taken from [15]. Disregarding 16 vectors
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containing missing values, the WBC set provides 683 examples in 9 dimensions.
The data contains labels corresponding to malignant (239 examples) and benign

(444 examples). For a more detailed description of this data set we refer to [14].
The LC data set contains 100 mass spectra with 22304 features each. It

has been down-sampled to 3696 features with no significant loss of information.
The data are provided with label information for two classes with 50 examples
each, labeled as cancer and control, respectively. Details about generation and
preprocessing of the data can be found in [16] as well as in [17].

We compare the performance of GLVQ based on Euclidean distances with the
variants employing the Cauchy-Schwarz (CS). For the WBC data we compare
with the Renyi divergence as well. To this end we split the data randomly in
training (90% of the data) and test set (10%). Results reported in the following
were obtained as averages over 100 randomized splits. Training is performed at
constant learning rates. In order to facilitate a fair comparison, we have chosen
the optimal learning rate from a range of values for each variant with respect to
the achieved performance after 200 training epochs. In the WBC set we employ
the learning rates η = 10−4 (GLVQeu), η = 10−6 (GLVQcs), and η = 10−5

(GLVQre). For the LC set, we employ η = 2.5 × 10−3 for, both, GLVQeu and
GLVQcs. Our first results correspond to the use of one prototype per class,
only. Their initial positions are obtained as the mean of 50% randomly selected
examples from each class.

After training we introduce a bias θ to the LVQ system: an input vector x is
assigned to class 1 if d(x,w1) < d(x,w2) + θ where wi is the closest prototype
representing class i. By varying θ, the full Receiver Operating Characteristics
(ROC) of the classifier can be obtained, the results presented in Figure 1 corre-
spond to a threshold-average over the 100 validation runs [18].

The average overall test accuracies after training (for bias θ = 0) and the
Area under Curve (AUC) corresponding to the test set ROC curves in Fig. 1
and training set ROC (not shown) are summarized in the follwing tables for the
WBC and LC data sets, respectively:

WBC training acc. test acc. AUC (training) AUC (test)
GLVQeu 85.00 (0.040) 84.46 (0.041) 0.924 0.918
GLVQcs 86.35 (0.003) 85.33 (0.007) 0.923 0.916
GLVQre 84.44 (0.059) 84.17 (0.059) 0.916 0.910

LC training acc. test acc. AUC (training) AUC (test)
GLVQeu 77.99 (0.006) 75.70 (0.004) 0.809 0.787
GLVQcs 74.06 (0.005) 69.70 (0.009) 0.825 0.796

Here the numbers in parantheses give the standard deviation observed over the
100 validation runs. In general we do not observe drastic differences in the
performance. For the high-dimensional LC data set, the use of the CS divergence
appears to yield slightly better AUC in the ROC characteristics. Note, however,
that at this stage of the investigation we mainly want to demonstrate that the
use of divergences in LVQ is feasible.
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Fig. 1: ROC curves for the WBC data set (left panel) and LC data set (right
panel). For both data sets, results are shown on average over 100 randomized
data set compositions and for the GLVQ variants based on Euclidean (GLVQeu)
and Cauchy-Schwarz (GLVQcs) measure. For WBC we have performed addi-
tional experiments using the Renyi (α = 2) divergence (GLVQre).

4 Conclusion

We have presented a framework for the derivation of a novel class of LVQ classi-
fiers which are based on information theoretic divergences and their derivatives.
The specific examples considered comprise the symmetric Cauchy-Schwarz di-
vergence and a non-symmetric Renyi divergence. We would like to point out,
however, that a large variety of differentiable dissimilarities can be employed
analogously, a prominent example being the Kullback-Leibler divergence.

The aim of this contribution was to demonstrate the potential usefulness
of the approach. To this end, we considered two example data sets from a
biomedical context. For the specific data sets considered here we observe very
little differences in performance quality when suitable learning rates are chosen.
Future applications will have to show to what extent the use of divergences can
be advantageous over standard choices. We expect that they will be most useful
for data sets where feature vectors are naturally interpreted as probabilities.
Besides problems from biology and medicine, we expect favorable performance
in, for instance, histogram based classification problems in image processing.

Besides more extensive comparisons in practical applications, future research
will also address the extension to generalized divergences which can be used for
unnormalized non-negative measures. This step will allow to incorporate rele-
vance learning into the framework and bears the promise to yield very powerful
LVQ training schemes.
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