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Abstract. We propose the utilization of divergences as dissimilarity mea-
sure in the Fuzzy c-Means algorithm for the clustering of functional data.
Further we adapt the relevance parameter to improve the data representa-
tion and therefore obtain more accurate clusterings in terms of separation
and compactness. We show for two example applications that this method
leads to improved performance.

1 Introduction

In machine learning the Fuzzy c-Means algorithm (FCM) plays an important
role. This prototype based unsupervised clustering method has been extensively
studied and applied to a great variety of problems from different research areas
like medicine and biology. Commonly the Euclidean distance is used as dissim-
ilarity measure, although any dissimilarity measure would be suited. Recently
divergences are used instead [1, 2, 3, 4]. Further, relevance learning, i.e. weight-
ing of input dimensions, was proposed for unsupervised vector quantization to
improve cluster separation [5]. We transfer this idea to FCM using generalized
divergences for relevance clustering of functional data. We denote this approach
as Relevance FCM (R-FCM).

2 Relevance learning for the Fuzzy c-Means algorithm

2.1 Fuzzy c-Means

The standard Fuzzy c-Means algorithm was proposed in [6]. A given D-dimen-
sional data set V = {v1, . . . ,vN}, V ⊆ R

D with N data points is partitioned
into C clusters with prototypesW = {w1, . . . ,wC},W ⊆ R

D while the objective
function

J(U,C) =

N
∑

i=1

C
∑

j=1

um
ijd

2
ij (1)

is minimized. The set U = {uij} defines a probabilistic cluster partition of V ,
where uij is an abbreviation for u(vi,wj) and is subject to the constraints

C
∑

j=1

uij = 1 and uij ≥ 0, ∀i ∈ {1, . . . , N} . (2)

The exponent m regulates the fuzziness. dij = d(vi,wj) is a dissimilarity func-
tion in R

D. Note that the dissimilarity measure is fixed and most commonly the
Euclidean distance is used.
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The updates for uij andwj follow an EM scheme with alternating calculation:

uij =
d

−2
m−1

ij

∑c

l=1 d
−2

m−1

lj

wj =

∑n

i=1 u
m
ijvi

∑n

i=1 u
m
ij

(3)

Now we consider functional data vi, i.e. v is a discrete representation
of a continous function v(x). Usually these functional vectors are very high-
dimensional and the vector components x are spatially correlated. Whereas for
common Euclidean vectors the vector dimensions are treated independently.

If these functions are assumed to be positive with finite L1-norm, the dis-
similarity between such functions can be evaluated by (generalized) divergence
measures taking into account the functional character [7]. If a certain divergence
D(v||w) is used as dissimilarity measure, the cost function (1) changes to

J(U,C) =

N
∑

i=1

C
∑

j=1

um
ijD(vi||wj) (4)

2.2 Relevance learning

We now explore the idea of relevance learning which consists in weighting the D
input dimensions such that a better clustering is obtained. This can be realized
for the Euclidean distance by weighting

dλ(v,w) = ‖λ ◦ (v −w)‖
2
= ‖λ ◦ v − λ ◦w‖

2
(5)

where λ ◦ v and λ ◦w are Hadamard products and the constraints λi ≥ 0 and
∑

λi = 1 are valid [8]. The λi are subject to optimization.
If for a cluster algorithm a divergence is used instead of the Euclidean dis-

tance we can also transfer the idea of relevance learning. For divergences we
consider again the weighting of the prototypes as well as the data by the above
mentioned Hadamard products.

For example consider the Kullback-Leibler divergenceDKL(v||w) with v and
w assumed as densities, i.e. vi, wj ≥ 0 and

∑

vi = 1 and
∑

wj = 1, where the
positivity of wj is assured by (3). If we now weight v by λ, λ ◦ v is no longer
a density but still a positive measure. Hence, for such data the generalized
Kullback-Leibler divergence has to be used:

Dλ
KL(v||w) =

D
∑

k=1

λkvk · log

(

vk
wk

)

−

D
∑

k=1

(λkvk − λkwk) (6)

Analogously the generalized Rényi divergence for relevance learning is

Dλ
R(v||w) =

1

α− 1
log

(

D
∑

k=1

[

(λkvk)
α

(λkwk)(α−1)
− α · λkvk + (α− 1) · λkwk

]

+ 1

)

(7)
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A very robust divergence for positive measures is the γ-Divergence which yields
for relevance learning as

Dλ
γ (v||w) = log

[

(
∑D

k=1(λkvk)
γ+1)

1
γ(γ+1) · (

∑D

k=1(λkwk)
γ+1)

1
γ+1

(
∑D

k=1(λkvk)(λkwk)γ)
1
γ

]

(8)

For γ = 1 the Cauchy-Schwarz divergence is obtained [9].
Generally, relevance learning is carried out by stochastic gradient descent

learning (SGDL) which becomes for R-FCM

∂J

∂λk

=

N
∑

i=1

C
∑

j=1

um
ij

∂Dλ(vi||wj)

∂λk

, ∆λk = −β
∂J

∂λk

, 1 ≤ k ≤ D. (9)

After relevance update, the prototypes have to be readjusted. Thus we get an
alternating process of relevance and prototype adaptation.

For SGDL we need the derivations of the divergences with respect to λk

which are

Generalized Kullback-Leibler divergence

∂Dλ
KL(v||w)

∂λk

= vk · log

(

vk
wk

)

− vk + wk (10)

Rényi divergence

∂Dλ
R(v||w)

∂λk

=
wk · ((

vk
wk

)α + α− 1)− vk · α

(α − 1)
∑N

l=1

[

λl ·
(

wl(
vl
wl
)α − α · vl + (α− 1) · wl

)]

+ 1
(11)

γ-divergence

∂Dλ
γ (v||w)

∂λk

=
vk(λkvk)

γ

γ
N
∑

l=1

(λlvl)2
+

wk(λkwk)
γ

N
∑

l=1

(λlwl)γ+1

−
vk(γ + 1)(λkwk)

γ

γ
N
∑

l=1

(λlvl)(λlwl)γ
(12)

Note that during the adaptation the constraints for λk have to be kept and
the dissimilarity measure is assumed to be fixed during the EM-like prototype
learning, as above. Hence the adaptation of λk has to be performed in an
adiabatic manner, such that the optimization process can easily follow this drift
[10]. The adiabatic behavior is realized by very small learning rates β in (9).

3 Experimental results

In this section we demonstrate the effects of relevance parameter adaptation
using different dissimilarity measures. For this purpose we used remote sensing
data FLC1 [11] and the Wine data set [12]. The data sets were processed by
the FCM algorithm using different dissimilarity measures: standard Euclidean
distance, Kullback-Leibler divergence, Rényi divergence and Gamma divergence;
the latter with varying values for γ. γ = 1 is equivalent to the Cauchy-Schwarz
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divergence and γ = 0.5 was chosen, because in [7] an improved clustering com-
pared to the Cauchy-Schwarz divergence was obtained. The adapted relevance
parameters are compared and discussed. For the analysis of the cluster solutions
we applied a number of cluster validity indexes

• The partition entropy PE = − 1
n

∑c
j=1

∑n
i=1 µij ·logm(µij) was introduced

by Bezdek [13],[14] and is a measure of compactness. It is merely based on
the fuzzy assigments and has no direct connection to the metric properties.
The partition entropy is desired to obtain a low value.

• Fukuyama&Seguno [15] proposed a validity function which combines the
compactness and the separation of a cluster solution FS =

∑c

j=1

∑n

i=1

µm
ijd(vi, wj)−

∑c

j=1

∑n

i=1 µ
m
ijd(wj , w̄), w̄ =

∑c

j=1 wj/c taking into account
the metric properties of the distance measure. This index is desired to
obtain a minimum.

• Xie&Beni’s [16] validity measure XB =
∑

c
j=1

∑
n
i=1 µm

ijd(vi,wj)

n·minj 6=ld(wj ,wl)
is also based

on the concept of compactness and separation, stating that a good clus-
tering is obtained by minimizing the compactness and maximizing the
separation. Therefore the aim is to achieve a low value for the index.

3.1 Remote sensing data

The Flightline C1 (FLC1) [11] remote sensing data was collected by an airborne
scanner and consists of 11451 spectral bands in the range of 0.4 to 2.4 µm, which
are assigned to 10 ground cover classes like corn, soybeans, wheat, and others.

We randomly choose 10 prototypes and after training we calculated the clus-
ter validity index measures to show the impact of relevance parameter adaptation
to the clustering. For means of comparability we always used the same proto-
type initializations and performed a total of 2500 relevance parameteter adaption
steps with an initial learning rate of 0.001. Per adaption step we used only 10%
of the data samples to achieve an adiabatic drift in the optimization process.
After each relevance adaption step we executed the known FCM clustering to
adapt the protoypes.

After completed clustering we calculated the before mentioned cluster valid-
ity indexes. All three measure show the expected behavior, i.e. they decrease
after the adaption of the relevance parameter, which indicates an improved clus-
tering in terms of compactness and separation. Detailed results depicting the
index values with and without relevance adaption can be found in Tab. 1.

The relevance profiles in Fig. 1 indicate an emphasis on the lower spec-
tral band, i.e. if the influence of these input dimenions during learning is in-
creased, the results will be improved. Remarkable are the relevance profiles for
the Kullback-Leibler and the Rényi divergence, since they are almost identical.

3.2 Wine data set

The Wine data set [12] contains 121 absorbing infrared spectra of wine between
4000 and 400 cm−1. We used this data set ignoring the class information ac-
cording to the alcohol level and clustered with 6 randomly chosen prototypes.
Again we obtained lower values for the validity measures after the adaption of
the relevance parameter indicating a better cluster solution, see lower part of
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Fig. 1: Relevance profiles and spectra of the FLC1 and the Wine data set.

Tab. 1. The relevance profiles plotted in Fig. 1 show an agreement with the in-
verse variance of the data indicating an emphasis on those dimensions, for which
the spectral bands lay close together. Remarkable are again the relevance pro-
files for the Kullback-Leibler and the Rényi divergence, which are again almost
identical.

4 Conclusion

In this contribution we demonstrated, how different dissimilarity measures, na-
mely Rényi, Kullback-Leibler and γ-divergences, can be incorporated in the
FCM algorithm for clustering of functional data. Thereby, the derivatives of the
divergences are used to adapt the relevance parameters. Hence, the metric is
no longer fixed and can therefore be modulated to improve the representation
of the data and to obtain a more accurate clustering in terms of compactness
and separation. We demonstrated the improved performance of the R-FCM
algorithm for two real life data sets.
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Idx Euclid Rényi Kull.-Leib. γ-Div.(γ=0.5) γ-Div.(γ=1.0)
Cauchy-Schw.

PE 2.3026 2.3026 2.3026 2.3026 2.3026
1.6516 1.4923 1.5492 1.4905 0.6474

FS 0.3392 255.0732 47.8509 464.2801 289.6427
0.0355 4.1854 1.8236 5.7332 8.6354

XB 0.0107 0.0195 0.0126 0.0224 0.0110
0.0054 0.0052 0.0052 0.0159 6.70e-04

PE 1.7918 1.7918 1.7918 1.7918 1.7918
1.1592 1.3554 1.3525 1.1013 0.9657

FS 5.19e-07 0.4658 0.0433 6.8077 5.4929
9.72e-10 2.27e-05 1.16e-05 9.60e-04 1.43e-05

XB 0.0491 0.0907 0.0528 0.0161 0.0153
0.0070 0.0340 0.0339 0.0052 0.0057

Table 1: Validity index measures for the FLC1 (upper part) and the Wine data set
(lower part) without (1st entry) and with (2nd entry) relevance parameter adaptation.
A lower value indicates a better clustering in terms of separation and compactness.
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