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Abstract. Constraint-based Bayesian network (BN) structure learning
algorithms typically control the False Positive Rate (FPR) of their skeleton
identification phase. The False Discovery Rate (FDR), however, may be
of greater interest and methods for its utilization by these algorithms have
been recently devised. We present a unified approach to BN skeleton
identification FDR estimation and control and experimentally evaluate
the performance of FDR estimators in both tasks over several networks.
We demonstrate that estimation is too conservative for most networks
and strong control at common FDR thresholds is not achieved with some
networks; finally, we identify the possible causes of this situation.

1 Introduction

Consider the following example of BN skeleton identification from related work
[2]: suppose a network of 100 genes, each one sharing a link (i.e., edge without
regard of direction) with 3 other genes on average, i.e., there are 150 out of
100 · (100− 1)/2 = 4950 possible links. An algorithm that learns the set of links
(i.e., the skeleton) with FPR = 5% and power = 90% discovers a network with
150 · 90% = 135 true links and (4950 − 150) · 5% = 240 false links, on average.
Then the expected proportion of false links, i.e., the False Discovery Rate is
240/(240+ 135) = 64%. When we are interested in having mostly true positives
among our discoveries, FDR, and not FPR, is the error rate of choice.

2 Constraint-based Bayesian network structure learning

The pair (G,P ) of a directed acyclic graph (DAG) G = (V,E) and a probability
distribution P of the variables in some set V is a Bayesian network if it satis-
fies the Markov condition: every variable (equivalently node) is independent of
any subset of its non-descendants conditioned on its parents [4]. Based on this
condition, G entails (i.e., implies) even more conditional independences; when
these are all and only in P , we say that G and P are faithful to each other [4].
Under faithfulness, two nodes are linked if and only if there is no subset of the
rest nodes that renders the two nodes conditionally independent. When there is
a DAG faithful to a distribution, there is usually more than one; however, since
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they all entail the same conditional independences, they all share the same set
of links, i.e., the same skeleton.

The goal of BN structure learning is to find a DAG G faithful to a distribution
P given a sample of P [4]. Constraint-based structure learning algorithms work in
two phases: first the conditional independences in P are identified and then they
are used as constraints in generating G [4]. The first phase is called constraint
or skeleton identification because it corresponds to learning the skeleton of G.

Typical constraint-based algorithms exploit a theorem that states that, under
faithfulness, if two nodes are not linked, there exists a subset of the parents of
one of them that renders the nodes conditionally independent [4]. For each pair
of nodes, these algorithms search for a subset of supersets of the parents (the
parents are, of course, unknown to the algorithms) of each of the two nodes that
renders these nodes conditionally independent. If such subset is found, the pair
is no longer considered; otherwise, a link between these nodes is discovered.

Conditional independences are identified by performing hypothesis tests at a
given significance level α. A test, however, is only attempted if there is sufficient
power according to a reliability criterion; otherwise it is ignored [5]. Even if a
test is attempted, the computation of its p-value may not be possible [5]; again,
the test is ignored. If there exist a DAG faithful to P and all statistical decisions
made are correct, constraint-based algorithms are proven to find such a DAG.

3 False Discovery Rate

False Discovery Rate is a multiple testing error measure introduced by Benjamini
and Hochberg [6], loosely defined as the expected proportion of false positives
among the rejected hypotheses (“discoveries”) and useful when we are interested
in having mostly true positives among our discoveries. Its precise definition is
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where V is the number of rejected true null hypotheses and R is the number of
rejections and R ∨ 1 corresponds to setting V/R to 0 when R = 0.

There are two approaches to utilize FDR. The first one, control, is to set an
FDR threshold q and find a p-value threshold t such that strong control of FDR
under q is achieved, i.e., FDR(t) ≤ q, where FDR(t) is the FDR resulting from
rejecting all hypotheses with p-value ≤ t. The procedure below is proven to
achieve strong control, assuming independent p-values [6] or positive regression
dependence of the p-values on each of the null p-values [7]:

Algorithm 1 Benjamini-Hochberg (BH) FDR control procedure

Let p(1) ≤ p(2) · · · ≤ p(m) be the ordered p-values

Let k = argmaxi{p(i) ≤
i
m
q}

Reject hypotheses corresponding to p(i) : i = 1 . . . k if k exists, otherwise none
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The second approach to FDR utilization is estimation: set a p-value threshold

t and estimate FDR(t) in a conservative manner, i.e., E[F̂DR(t)] ≥ FDR(t).
It was introduced by Storey [8], along with a family of estimators1 proven to be
conservative when the p-values are independent:

F̂DR(t) ,
m · t

R(t) ∨ 1

F̂DR(t) can be used to define valid FDR control procedures [3]: taking the

largest t s.t. F̂DR(t) ≤ q corresponds to applying the BH procedure.

4 False Discovery Rate of skeleton identification

4.1 Skeleton identification as a multiple testing procedure

In order to utilize FDR, skeleton identification is viewed as a multiple testing
procedure, the null hypotheses being the absence of links. To test the hypothesis
H¬X–Y of absence of a link between nodes X and Y , constraint-based algorithms
complete the tests of the hypothesesHI(X,Y |Z) and obtain test statistics gI(X,Y |Z)

and p-values pI(X,Y |Z) for some set SX–Y of subsets Z of V. The p-value p¬X–Y

of H¬X–Y is the probability, when H¬X–Y is true, that the statistics GI(X,Y |Z)

are as extreme or more extreme than the obtained statistics gI(X,Y |Z):

p¬X–Y = Pr

(

⋂

Z∈SX–Y

{

|GI(X,Y |Z)| ≥ |gI(X,Y |Z)|
}

∣

∣

∣

∣

∣

¬X–Y

)

Unfortunately, p¬X–Y is unavailable. However, pI(X,Y |Z) can be used to upper-
bound p¬X–Y thanks to the following theorem:

Theorem 1. If (1) there is a DAG faithful to the probability distribution P ,
(2) all conditional independence tests considered by the algorithm are completed
(i.e., return a p-value), and (3) the realized power of the output skeleton is 1,
i.e., all true links are discovered, then the p-value p¬X–Y of the link absence
(LA) hypothesis H¬X–Y is upper-bounded by the maximal maxZ∈SX–Y

pI(X,Y |Z)

among the p-values pI(X,Y |Z) of the conditional independence (CI) hypotheses
HI(X,Y |Z) tested by the algorithm:

p¬X–Y ≤ max
Z∈SX–Y

pI(X,Y |Z)

Proof. First consider the hypothesis H∃Z∈SX–Y :I(X,Y |Z) that there is a set Z in
SX–Y that rendersX and Y conditionally independent. Tsamardinos and Brown
[1] prove that the p-value p∃Z∈S:I(X,Y |Z) of H∃Z∈SX–Y :I(X,Y |Z) is upper-bounded
by the maximal maxZ∈SX–Y

pI(X,Y |Z) among the p-values pI(X,Y |Z) of the CI
hypotheses HI(X,Y |Z). When (1), (2) and (3) hold, by design of constraint-based

1Storey’s estimators also include a π̂0(λ) term, which is an estimator of the proportion of
true null hypotheses. Because π̂0(λ) is not applicable in this context we use π̂0(λ) = 1 instead.
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algorithms SX–Y contains all subsets of Pa(X) and all subsets of Pa(Y ). Then
the hypotheses H∃Z∈S:I(X,Y |Z) and H¬X–Y are equivalent. Hence, p¬X–Y =
p∃Z∈S:I(X,Y |Z) ≤ maxZ∈S pI(X,Y |Z).

The assumptions above are also stated in [1] but not formally included in a
theorem. No formal proof for the upper bounds themselves is given in [2] too.
If we assume independent maximal CI p-values, constraint-based algorithms
implicitly control the FPR at the α level: an LA hypothesis is accepted if a CI
p-value exceeds α, or equivalently, if the maximal CI p-value exceeds α [2].

4.2 Estimation and control of skeleton identification FDR

Tsamardinos and Brown [1] follow the estimation approach in local BN learning;
the latter is concerned with learning the set PC(X) of parents and children of
a single node X . First, PC(X) is learned by performing tests of conditional
independence at the α level, thus implicitly controlling the local learning FPR
at the α level (assuming independence of the maximal CI p-values). Then the

local learning FDR is estimated by F̂DR(α).
Li and Wang [2] follow the control approach in skeleton identification (global

BN learning). They modify the skeleton identification phase of the PC algorithm
and come up with PCFDR–skeleton, a skeleton identification algorithm with
embedded FDR control. PCFDR–skeleton is proven to strongly control the FDR
at a given level q under assumptions similar to those of Theorem 1. PCFDR–
skeleton does not accept a CI hypothesis (and subsequently, an LA hypothesis)
when its p-value exceeds some FPR threshold α but instead applies the BH
procedure to the up-to-date maximal CI p-values with an FDR threshold q after
an up-to-date maximal CI p-value is updated. Given that, if an FDR control
procedure strongly controls FDR given some p-values, it also strongly controls
FDR given upper bounds on those p-values, PCFDR–skeleton strongly controls
FDR when it terminates.

In this work we adapt the method of Tsamardinos and Brown [1] to skeleton

identification, whose FDR is estimated by F̂DR(α). Moreover, instead of only

computing F̂DR(α), we compute F̂DR at all maximal CI p-values; doing so
allows for subsequent FDR control at any level q, instead of having to fix q in
advance as with PCFDR–skeleton. On the other hand, PCFDR–skeleton does not
require an FPR threshold α to be specified.

5 Experimental results

We generated 100 random samples of size 5000 from the Alarm, Barley, Hail-
finder, Hepar II, Insurance and Win95pts networks from online repositories
and applied the skeleton identification phase of the MMHC algorithm [5], with
α = 0.05, on each sample. Expectations are estimated by the respective means.

For FDR estimation, we computed F̂DR(t) at the same 50 logarithmically
spaced in [10−810−1] p-value thresholds t for all samples of each network, because
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Fig. 1: FPR (a) and FDR (b) as functions of the p-value (FPR) threshold t.
X-axes are in logarithmic-10 scale. Both quantities vary greatly among networks
and increase as t increases. For t = α = 0.05 they are equal to the skeleton iden-
tification FPR and FDR respectively. The thin black curve in (a) is FPR(t) = t.
FPR is not controlled at any level t for Barley, Hailfinder and Win95pts.
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(a) E[F̂DR(t)] − FDR(t)

(F̂DR bias at p-value thresh-
old t) increases as t increases
and is mostly negative, (i.e.,

F̂DR(t) is not conservative)
for Barley, Hailfinder and
Win95pts. The bias at t =
α = 0.05 is the skeleton iden-
tification FDR bias and is too
positive for all networks ex-
cept Barley and Hailfinder.
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(b) q − FDR(q) (F̂DR “con-
trol bias” at FDR thresh-
old q). FDR is tightly con-
trolled (i.e., control bias is
positive and small) at all q

with Alarm, at q > 10−2 for
Hepar II and Insurance but at
no q for the rest networks.
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(c) E[t(q)], the expected p-
value threshold t returned by
the BH procedure with FDR
threshold q. The y-axis is in
logarithmic-10 scale. For q

s.t. FDR(q) is tightly con-
trolled (Fig. 2b), the cor-
responding E[t(q)] belongs to
the lower part of the range of

t, where F̂DR(t) bias is posi-
tive and small (Fig. 2a).

Fig. 2: FDR estimation and control bias. X-axes are in logarithmic-10 scale.

different sets of links (skeletons) with different maximal CI p-values are learned
from different samples. FPR(t) and FDR(t) (Fig. 1) vary greatly among net-

works; 2 F̂DR is slightly not conservative (i.e., its bias, E[F̂DR(t)] − FDR(t),
is slightly negative) at the smaller t for Alarm, Hepar II and Insurance and
absolutely not conservative for the rest networks except for t close to α (Fig.
2a). The skeleton identification FDR estimation is too conservative because it

corresponds to F̂DR(α), which is too conservative for most networks.

2We also considered an alternative definition of the FDR, called the positive FDR (pFDR)
[8]. We found FDR(t) = pFDR(t) for all networks so we did not consider pFDR any further.
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For FDR control, we applied the BH procedure to the maximal CI p-values
from each sample of each network to control the FDR of each network at 50
logarithmically spaced in [10−310−1] FDR levels q. Whether strong control is

achieved is an immediate result of the estimators being conservative: F̂DR
achieves strong control at any threshold q for Alarm, slightly fails for Hepar II
and Insurance for q < 10−2 and fails miserably for the rest networks (Fig. 2b).

There are two possible causes for the lack of accuracy of FDR estimation and
control: Either (1) the dependence of the maximal CI p-values is not supported
by the estimators (which assume independence or positive regression dependence
for the p-values) or (2) there are maximal CI p-values that are not upper bounds
on the LA p-values, or both. These issues are not inherent to our approach: the
assumptions of [2] are similar to ours and the estimators used there are the same
as here. PCFDR–skeleton is evaluated with custom networks and at q = 0.05
only; we plan to compare both approaches at various q using repository networks.

6 Conclusions and future work

We presented a unified approach to BN skeleton identification FDR estimation
and control and demonstrated that estimation is too conservative for most net-
works and strong control at common FDR thresholds is not achieved with some
of the networks we used. We identified the two possible causes of this lack of
accuracy and we are currently working on eliminating them.
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