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Abstract. In this paper we propose a spectral based clustering algorithm
to maximize an extended Modularity measure for categorical data; first,
we establish the connection with the Relational Analysis criterion. Second,
the maximization of the extended modularity is shown as a trace maxi-
mization problem. A spectral based algorithm is then presented to search
for the partitions maximizing the extended Modularity criterion. Experi-
mental results indicate that the new algorithm is efficient and effective at
finding a good clustering across a variety of real-world data sets

1 Introduction

Clustering is a method of unsupervised learning allowing the assignment of a
set of observations into groups. Data clustering is a data analysis technique and
has been considered as a primary data mining method for knowledge discovery.
Clustering is defined as the process of partitioning a finite set of points in a multi-
dimensional space into classes (called clusters)[14]. The problem of clustering
becomes more challenging when the data is categorical, that is, when there is
no inherent distance measures between data values. Many algorithms have been
developed for clustering categorical data, e.g, 1998; Huang [13], 1998; Ganti et
al. [1], 1999). The modularity measure has been used recently for graph cluster-
ing [15] [6]. In this paper, we show that the Modularity clustering criterion can
be formally extended for categorical data clustering. We also establish the con-
nections between the extended Modularity criterion and the Relational Analysis
(RA) approach [2][3] which is based on Condorcet’s criterion. We then develop
an efficient spectral based procedure to find the optimal partition maximizing
the extended Modularity criterion. The rest of the paper is organized as follows:
Section 2 introduces some notations and definitions, in Section 3 provides the
proposed extended modularity measure and its connection with the RA crite-
rion. Some discussions on the spectral connection and optimization procedure
are given in Section 4. Section 5 shows our experimental results and finally,
Section 6 presents the conclusions and some future works.

2 Definitions and Notations

Let D be a dataset with a set I of N objects (O1, O2, ..., ON ) described by
the set V of M categorical attributes (or variables) V 1, V 2., V m, .., V M each
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one having p1, .., pm, .., pM categories respectively and let P =
∑M

m=1 pm denote
the full number of categories of all variables. Each categorical variable can
be decomposed into a collection of indicator variables. For each variable V m,
let the pm values naturally correspond to the numbers from 1 to pm and let
V m

1 , V m
2 , ..., V m

pm
be the binary variables such that for each j, 1 ≤ j ≤ pm, V m

k = 1
if and only if the V m takes the j-th value. Then the dataset can be expressed as a
collection of M N×pm matrices Km, (m = 1, .., M) of the general term km

ij such
as: km

ij = 1 if the object i takes the attribute j of V m and 0 otherwise. Which
gives the N by P binary disjunctive matrix K = (K1|K2|...|Km|...|KM ). For
each variable V m, the similarity matrix Sm can be expressed as Sm = Km(Km)t,
the global similarity matrix (Condocet’s matrix) S = KKt where (Km)t and
Kt are the transposed Km and the transposed K matrix, respectively.

3 Extended Modularity Measure.

Modularity is a recently quality measure for graph clustering, it has immediately
received a considerable attention in several disciplines [15] [6]. Given the graph
G = (V, E), let A be a binary, symmetric matrix with (i, j) as entry; and aij = 1
if there is an edge between the nodes i and j. If there is no edge between nodes
i and j, aij is equal to zero. We note that in our problem, A is an input having
all information on the given graph G and is often called an adjacency matrix.
Finding a partition of the set of nodes V into homogeneous subsets leads to the
resolution of the following integer linear program: maxX Q(A, X) where

Q(A, X) =
1

2|E|
n∑

i,i′=1

(aii′ − ai.ai′.

2|E| )xii′ =
1

2|E|Tr[(A− δ)X] (1)

is the modularity measure, 2|E| =
∑

i,i′ aii′ = a.. is the total number of edges
and ai. =

∑
i′ aii′ the degree of i and ∀i, i′ δii′ = ai.ai′.

2|E| . X is the solution we
looking for which must satisfy the following properties of an equivalence relation
defined on I × I; xii = 1, ∀i (reflexivity), xii′ − xi′i = 0, ∀(i, i′) (symmetry),
xii′ + xi′i′′ − xii′′ ≤ 1, ∀(i, i′, i′′) (transitivity) and xii′ ∈ {0, 1},∀(i, i′) (binarity)

We shows now how to adapt the Modularity measure for categorical data
clustering. The basic idea consist in a direct combination of graphs from all
variables into a single dataset (graph) before applying the learning algorithm.
Let us consider the Condorcet’s matrix S where each entry is denoted as sii′ =∑M

m=1 sm
ii′ , which can be viewed as a weight matrix associated to the graph

G = (I, E), where each edge eii′ have the weight sii′ . Similarly to the classical
Modularity measure, we define the extension Q1(S,X) as follows:

Q1(S, X) =
1

2|E|
n∑

i,i′=1

(sii′ − si.si′.

2|E| )xii′ =
1

2|E|Tr[(S − δ)X] (2)

where 2|E| = ∑
i,i′ sii′ = s.. is the total weight of edges and si. =

∑
i′ sii′ - the

degree of i. We can establish a relationship between the extended modularity
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measure and the RA criterion, indeed the function Q1(S,X) can be expressed
as a modified RA criterion in the following way:

Q1(S, X) =
1

2|E| (RRA(S, X) + ψ1(S, X)) (3)

where

ψ1(S, X) =
n∑

i=1

n∑

i′=1

(mii′ − si.si′.

2|E| )xii′ (4)

is the weighted term that depends on the profile of each pair of objects (i, i′),
RRA(S, X) is the relational analysis criterion(see Marcotorchino [3][2] for further
details),

RRA(S,X) =
∑

i

∑

i′
(sii′ −mii′)xii′ (5)

with M = [mii′ = sii+si′i′
4 = M

2 ]i,i′=1,...,N , the matrix of threshold values,sii

and si′i′ are the self similarities of objects i and i′.

4 Maximizing the Normalized Extended Modularity with
Spectral Algorithm

The original Modularity criterion is not balanced by the cluster size, meaning
that a cluster might become small when affected by outliers. Thus we define
the new measure which we call normalized extended modularity whose objective
function is given as follows:

Q̃1(S,X) = Tr[(S − δ)V −1X] (6)

where V = diag(Xe) is a N by N diagonal matrix such that vii = xi. the
number of objects in the same cluster with the object i. and e = 1 is the vector
of appropriate dimension which all its values are 1.

4.1 Spectral connection

On one hand, it’s well known that the largest eigenvalue of S̃ = D− 1
2 SD− 1

2 (where

D = diag(Se)) and its eigenvector are λ0 = 1, U0 = D− 1
2 e

S..
[16] [17], where

S.. =
√

etSe.
We apply the spectral decomposition of the scaled matrix S̃ instead on S directly,
leading to S = D

1
2

∑
k=0 UkλkU t

kD
1
2 . Subtract the trivial eigenvector corre-

sponding the largest eigenvalue λ0 = 1 give S = DeetD
etDe + D

1
2

∑
k=1 UkλkU t

kD
1
2

we would consider instead the (K − 1)th principals eigenvectors of

S − DeetD

etDe
= D

1
2

∑

k=1

UkλkU t
kD

1
2 (7)

this matrix multiplied by the constant 1
etDe (which has no effect on the position

of the maximum of the modularity criterion)) is exactly the matrix (S− δ) used
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in the modularity measure (see equation (1)).
On the other hand the problem of maximizing the normalized extended modu-
larity can be modelled as a trace maximization problem. Consider the division
of the data set I into K non overlapping clusters, where K may now be greater
or equal to 2. Let us define an N × K index matrix Z with one column for
each cluster; Z = (Z1|Z2|...|ZK). Each column is an index vector now of (0, 1)
elements such that Zik = (1 if object i belongs to cluster k, 0 otherwise). The
equivalence relation X and the weighted equivalence relation V −1X can now be
factorized as follows: X = ZZt and V −1X = Z̃Z̃t where Z̃ = Z(ZtZ)−1/2. It’s
easy to show that Z̃ satisfies the orthogonality constraint, then the maximiza-
tion of the normalized extended modularity is equivalent to the following trace
optimization problem

max
Z̃tZ̃=IK

Tr[Z̃t(S − δ)Z̃] (8)

The matrix S − δ used in the modularity is expressed in term (K − 1)th largest
eigenvectors of the scaled matrix S̃. After solving the spectral decomposition of
S̃ we have the resultant (K − 1) eigenvectors with largest eigenvalues. That is,
we can have the N × (K − 1) matrix U = [U1, ..., UK−1], where Uk is the k − th
eigenvector of the selected K−1 eigenvectors we then normalize this matrix into

N × (K − 1) matrix Ũ in which Ũk = D
1
2 Uk

||D 1
2 Uk||

. This eigenmatrix Ũ can be an

input of K-means, below the pseudo code of the proposed algorithm.
Algorithm2- SpectMod Algorithm :Given a set of data object that we
want cluster into K clusters

1. Form the affinity matrix S

2. Define D to be the diagonal matrix D = diag(Se)

3. Find U the K − 1 largest eigenvectors of S̃ = D−1/2SD−1/2

4. Form the matrix Ũ from U by Ũk = D
1
2 Uk

||D 1
2 Uk||

, ∀k = 1, ...,K − 1

5. Considering each row of Ũ as a point in RK, cluster them into K
clusters using k-means

6. Finally assign object i to cluster Ck if and only if the corresponding
row Ũi of the matrix Ũ was assigned to cluster Ck.

5 Experimental Results

A performance study has been conducted to evaluate our method. In this section,
we describe those experiments and the results. We ran our algorithm on real-
life data set obtained from the UCI Machine Learning Repository to test its
clustering performance against other algorithms. Validating clustering results is
a non-trivial task. In the presence of true labels, as in the case of the data set
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we used, the clustering purity is used to measure the quality of clustering. The
description of the used data sets is given in Table 1:

Table 1: description of the data set

Data set # of Objects # of Attributes Classes
Soybean small 47 21 4

Mushroom 8124 22 2
Congressional votes 435 16 2

Zoo 101 16 7
Hayes-roth 132 4 3

Balance Scale 625 4 3
Car evaluation 1728 6 4
Soybean large 307 35 19

SPECTF 267 22 2
Post-Operative 90 8 3

5.1 Results analysis

We studied the clusterings found by different algorithms, we first compare the
proposed SpectMod algorithm, RA algorithm based on the extended modularity
measure and the RA algorithm [3]. Second, we compare our SpectMod algorithm
with standard k-modes algorithm introduced in [13], K-representative algorithm
proposed in [4], weighted k-modes algorithm [10].

Table 2: Purity measure (%)for RRA(S,X) et Q1(S, X) and SpectMod

BD Taille RRA(S, X) Q1(S, X) SpectMod

Soybean small 47x21 78 100 100
Zoo 101x16 83 88 90

Soybean large 307x35 70 72 76
SPECTF 267x22 61 72 76

Post-Operative 90x8 71 73 73
Balance Scale 625x4 63 63 65

Table 3: Purity measure (%) for K-modes, K-representatives, weighted k-modes
and SpectMod

Data set K-Modes K-Representatives WK-Modes SpectMod
Soybean small 66 89 89 100

Mushroom 59 61 61 61
Congressional votes 62 87 88 88

Zoo 88 89 90 90
Hayes-roth 41 42 42 54

Balance Scale 50 52 52 65
Car evaluation 70 70 71 70

The Tables 2 and 3 summaries the result of clustering purity, the proposed
method SpectMod brought better or similar clustering purity than the other
algorithms, which means that the proposed approach improves the clustering
purity.
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6 Conclusions

In this paper, we have studied the spectral interpretation of the the extended
modularity maximization for categorical data clustering. An efficient spectral
procedure for optimization is presented, the experimental results obtained using
different data sets showed that our method worked favorably for categorical
data. Our method can be easily extended to more general spectral framework for
combining multiples heterogenous data sets for clustering. Thus, an interesting
future work is to apply the approach on a variety of heterogenous data sets;
numerical data, categorical data and graph data.
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