
A brief tutorial on reinforcement learning:

The game of Chung Toi

Christopher J. Gatti1, Jonathan D. Linton2, and Mark J. Embrechts1 ∗

1- Rensselaer Polytechnic Institute
Department of Industrial and Systems Engineering

Troy, NY 12180 - USA

2- University of Ottawa - Telfer School of Management
Ottawa, ON K1N 6N5 - Canada

Abstract. This work presents a simple implementation of reinforcement
learning, using the temporal difference algorithm and a neural network,
applied to the board game of Chung Toi, which is a challenging variation
of Tic-Tac-Toe. The implementation of this learning algorithm is fully
described and includes all parameter settings and various techniques to
improve the ability of the network to learn the board game. With relatively
little training, the network was able to win nearly 90% of games played
against a ’smart’ random opponent. The aim of this work is to develop
a general software framework for reinforcement learning with an aim to
allow for the implementation of game playing strategies for managers that
can be applied to option and portfolio management.

1 Introduction

Reinforcement learning is a learning technique in which an agent learns a task
through repeated interaction with an environment. This method has been used
to create computer programs that are capable of playing various board games at
very high levels of expertise. The most notable example is that by Tesauro, who
used reinforcement learning to create a backgammon player that could challenge
world class human opponents [5, 6]. One game that reinforcement learning has
not yet been applied to, is that of Chung Toi, a clever and challenging extension
to Tic-Tac-Toe. The purpose of this work is to provide a basic general software
framework for reinforcement learning, and to describe the implementation of this
learning method to the game of Chung Toi. The availability of a general-purpose
reinforcement learning software platform was motivated in order to have a game
theoretic framework that can accommodate the implementation of game playing
strategies for the selection of options and portfolios.

2 The game of Chung Toi

Chung Toi is similar to the game of Tic-Tac-Toe in that it is a two player
game, it is played on the same 3×3 board, and the objective of the game is
to get three of ones’ pieces in a row. The game differs in that each player has

∗This research was supported by the Natural Sciences and Engineering Research Council
of Canada.

129

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

only three of either white or red octagonal pieces that are labeled with arrows
[Figure 1]. Players initially take turns placing their pieces on open positions of
the board, orienting the pieces either cardinally or diagonally. In the second
phase of the game, players take turns moving and/or rotating their pieces to
open positions on the board. However, pieces can only be moved in directions
which correspond to the orientation of the respective piece. For example, a piece
that is oriented cardinally can only be moved to open positions that are either
vertical or horizontal relative to its current location.

Fig. 1: The game of Chung Toi. Players first place pieces on the board, aligning
them cardinally or diagonally, and then move and/or rotate pieces attempting
to obtain three of ones’ pieces in a row.

3 Reinforcement learning

Reinforcement learning is based on an agent repeatedly interacting with an en-
vironment and learning from rewards or penalties (i.e., feedback) resulting from
good and poor decisions [Figure 2]. Consequently, the implementation of rein-
forcement learning requires models of both the environment and the agent.

Agent
(neural network)

Environment

a(t)

r (t+1)

s (t+1)

s (t)

r (t)

Fig. 2: The reinforcement learning paradigm. An agent selects an action based
on the current state, and the environment provides rewards based on the actions
pursued, which are used to update state values (adapted from [4]).

3.1 The environment

The model of the environment consists of a board representation, the rules of the
game, and an evaluation function. As mentioned above, the Chung Toi board
consists of 3×3 board, thus the pieces on the board can be coded using two
9×1 vectors: one indicating their presence, and one indicating their orientation.
The positions of the pieces were encoded with a 1 or -1, indicating a white

130

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

piece or red piece, respectively, or a 0 indicating an open board location. The
orientation of the pieces were encoded with a 1 or -1, indicating that a piece
(in the corresponding position vector) was oriented cardinally or diagonally,
respectively, or a 0 indicating an open board location. Additionally, a 2×1 vector
was used to indicate which player was to play next; [1 0]T indicated player 1 was
to play next, and [0 1]T indicated player 2 was to play next. The state of the
game was therefore fully represented by concatenating these vectors, resulting
in a 20×1 state vector. In this work, player 1 was assigned to the white pieces
and always had the first turn during both training and evaluation games.

The rules of the game were implemented simply as those stated above. This
required determining all allowable moves for each player, as well as developing
an evaluation function which could determine if either player had won the game.
One of the most challenging parts of applying reinforcement learning to a board
game is that of explicitly coding the rules of the game, identifying all of the
allowable moves, and employing playing strategies of the network.

3.2 The agent

The agent interacts with the environment by selecting moves and learning from
feedback from winning and losing. The agent is represented using a multi–layer
neural network which acts as a function approximator, with inputs corresponding
to the 20 components state vector, a single hidden layer, and a single output
node. The output can be considered as the value of the state, with respect
to player 1, that was input to the network; greater output values correspond to
states from which player 1 is more likely to win the game. Moves are selected for
player 1 by first identifying all possible moves, and then evaluating the value of
each of these moves (i.e., evaluating all possible next states through the network).
The agent follows an ε-greedy policy, selecting the move with the greatest value
with probability ε. This policy is used to allow the agent to both exploit its
expertise, and explore moves that may be beneficial, but that aren’t regarded as
such by the current network.

The agent gains expertise by repeatedly playing games and using feedback to
update the weights of the neural network and improve its state value estimations.
In the case of board games, feedback is often only provided at the end of the
game, and this feedback is the only information from which the agent can learn
each state value. More specifically, feedback is used with the temporal difference
algorithm to adjust the weights in the neural network. The temporal difference
algorithm was formalized by Sutton and Barto [3, 4] and can be thought of as an
extension of the backpropagation algorithm [2, 7]. The temporal difference algo-
rithm uses discounted information from future states, using a temporal discount
factor λ, to update the network weights, and thus the state values, of previous
states. The weight update equation for a weight wjh (weight from a neuron in
layer h to a neuron on layer j) takes the general form:

⎛
⎝

weight
correction

Δwjh

⎞
⎠

(t)

=

⎛
⎝

learning
parameter

α

⎞
⎠×(

error
)×

∑
t

⎛
⎝
temporal
discount

λ

⎞
⎠

(t)

×
⎛
⎝

local
gradient

δj

⎞
⎠

(t)

×
⎛
⎝

input of
neuron j

yh

⎞
⎠

(t)

131

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

As λ→0, weight updates become based only on information from the sub-
sequent state; as λ→1, weight updates amount to averaging information from
all subsequent states. The above equation can be more explicitly written for

updating the weights (w
(t)
jh) to the output layer j, from the hidden layer h:

Δw
(t)
jh = α

(
P (t+1) − P (t)

) t∑
k=1

λt−kf ′(v(k)j)y
(k)
h

where α is the learning rate, P (t) and P (t+1) are the state values (i.e., network
output) at the current and subsequent time steps, respectively, λ is the temporal
discount factor, f ′(vj) is the transfer function derivative at node j evaluated at
the induced local field vj =

∑
h wjhyh, and yh=f (vh) is the output of the hidden

node h where f (·) is a transfer function. Note that the superscripts in parentheses
are not exponents and are used to indicate time steps within the game for the
corresponding variables; also note that the superscript on the temporal discount
factor λ is an exponent. The above equation can be extended to update weights

(w
(t)
hi) to the hidden layer h, from the input layer i :

Δw
(t)
hi = α

(
P (t+1) − P (t)

) t∑
k=1

λt−kf ′(v(k)j)wjhf
′(v(k)h)x

(k)
i

The game progresses as follows at the time step t : a player selects the next
move for time step t+1 and the board is updated with the new piece loca-
tion/orientation; the board is evaluated for a win, loss, or no current winner;
and the network weights are updated using state values P from the current (t)
and next time steps (t+1). At the end of the game, there is no next state value
P (t+1), and this is instead replaced with the reward for the current game. Note
that this method is an iterative weight updating scheme, in which weights are
updated during the game.

3.3 Training and performance evaluation

Training is performed by having the network play against itself: player 1 selects
moves with the greatest state value (with probability ε), and player 2 selects
moves with the smallest state value (with probability ε). Greedy wins and blocks
were also allowed for both players; these moves allow either player to take moves
that lead to a win (1st preference) or to blocking an opponent’s win (2nd pref-
erence), regardless of the state value estimate. The performance of the network
was evaluated after every 100 training games by playing 300 evaluation games,
which was sufficient to obtain a stable performance estimate. The performance
of the network was quantified by the proportions of wins, losses, and draws (i.e.,
games with more than 100 moves; in reality, there are no draws in Chung Toi).
During evaluation games, player 1 always played the first move, always selected
moves corresponding to the greatest state value (ε=1), and was not allowed to

132

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

take greedy wins or blocks. The opponent selected moves at random, but was
considered ’smart’ such that it was allowed to take greedy wins or blocks.

3.4 Network and parameter settings

The above-described implementation requires numerous parameter settings, which
were set as follows: ε=0.85; λ=0.7; α=0.0012; reward values consisted of 1 if
player 1 wins, -1 if player 2 wins, and 0 for a draw. The parameters ε and α were
annealed over the course of training (increased and decreased, respectively). The
neural network was a 3 layer (1 hidden layer) fully connected network, with 20
input nodes, 30 hidden nodes, and 1 output node; the input and hidden layers
each had a bias node with a constant input value of 1. All hidden nodes used
a hyperbolic tangent transfer function of the form f(x) = 1.7159 tanh(2

3x) [1],
and the output node used a linear transfer function. Weights were initialized
by randomly sampling from a distribution with a mean of zero and a standard
deviation σw=m−1/2 where m is the number of weights leading into node w [1].
These parameters were set based on recommendations from literature sources
regarding the backpropagation and temporal difference algorithms [1, 6, 8].

4 Results

The neural network was trained for 2000 training games and its performance
during training is shown in Figure 3. Upon initialization, the network wins
about 50% of the games. In the early stages of training, performance is often
somewhat erratic however, after training, the network was able to win nearly 90%
of the games. This performance gain was achieved with relatively few training
games, and additional training should allow performance to improve further.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of training games

P
ro

p
o

rt
io

n
 o

f
g

a
m

e
s

Wins
Losses
Draws

Fig. 3: Performance of network during 2000 training games.

5 Discussion

This work applied reinforcement learning, using the temporal difference algo-
rithm, to train a neural network to play Chung Toi. The learning strategy was

133

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

based on a basic implementation of the reinforcement learning method, though
it also required appropriate parameter settings and a number of techniques to
improve the ability of the network to learn. The learning algorithm has been
evaluated with many different parameter settings and implementation variations,
and it was found that the values and methods used in the implementation de-
scribed herein work well; however, and variations to these parameters may also
allow the network to learn.

The use of an opponent which mainly selects random moves to evaluate the
performance of the network may be viewed as a deficiency. Simply because
the network can win the majority of games against such an opponent does not
necessarily mean it would be able to challenge a human opponent. Increasing
the playing expertise of the neural network further would require many more
training games (upwards of hundreds of thousands as in [6]), and this would also
significantly increase the computation time. The purpose of the current work
however, was to show how a simple implementation of reinforcement learning,
with relatively little training, could be used to train a network to learn how to
perform well in a challenging environment. In this implementation, the network
was trained using games played only against itself. Other training strategies are
possible however, and these may be used increase the expertise and the speed of
learning of the network [6, 8, 9].

In summary, this work presented a basic framework for implementing rein-
forcement learning, and this framework was used to train a neural network to
play a challenging board game. This work successfully extended the reinforce-
ment learning method to a new domain, and supports exploring its use in more
challenging, real-world game-like environments, such as in options trading.

References

[1] Y. LeCun, L. Bottou, G. Orr, and K. Müller, Efficient BackProp. In G. Orr, and K.
Müller, editors. Neural Networks: Tricks of the Trade, Springer, 1998.

[2] D. E. Rumelhart, G. E. Hinton, R. J. Williams. Learning internal representations by
error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed
Processing Vol. 1, MIT Press, Cambridge, MA, 1986.

[3] R. S. Sutton. Learning to predict by the method of temporal difference, Machine Learning,
3: 9-44, 1988.

[4] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. (1st ed.) MIT
Press, Cambridge, MA, 1988.

[5] G. Tesauro. Neurogammon: A neural network backgammon program. In proceedings of
the International Joint Conference on Neural Networks. Vol. 3, pages 33-40, 1990.

[6] G. Tesauro. Practical issues in temporal difference learning, Machine Learning, 8: 257-
277, 1992.

[7] P. Werbos. Beyond regression: New tools for prediction and analysis in the behavioral
sciences. Ph.D. Dissertation, Harvard University, Cambridge, MA, 1974.

[8] M. A. Wiering. TD learning of game evaluation functions with hierarchical neural achi-
tectures. Master’s Thesis, University of Amsterdam, 1995.

[9] M. A. Wiering. Self-play and using an expert to learn to play backgammon with temporal
different learning, Journal of Intelligent Learning Systems & Applications, 2: 57-68, 2010.

134

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

