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Abstract.

Recent studies using feedforward Echo State Networks (ESN) demonstrate
that reservoir stability can be strongly affected by reservoir substructures,
such as clusters. Here, we evaluate the impact of including feedback on
clustered ESNs and assert that certain cluster configurations extend the
permissible range of spectral radius values. We also report a new class of
reservoir activity: intermittent dynamics, characterized by variable peri-
ods of chaotic activity before returning to quiescent behaviour. Using a
non-linear benchmark data set, we establish clustered ESNs have compa-
rable performance against conventional ESNs, but importantly display an
increased tolerance and robustness to spectral radius and input choice.

1 Background

Echo State Networks (ESN) are recurrent neural networks, characterized by a
reservoir of sparse connections that remain fixed for the life time of the network
while only the output weights are trained [1]. Demonstrated to have excellent
performance, especially for prediction of non-linear signals, attention has been
recently focused on defining conditions for their stability and dynamical range
of reservoir activity.

While stringent criteria for stability have been identified for ESNs with feed-
forward architecture, the introduction of feedback from output to the reservoir
can greatly alter network behaviour [2] to the point where ESNs easily enter
chaotic regimes.

Here, we investigate how introducing clustered reservoirs can increase ro-
bustness of reservoirs in feedback ESNs, prompted by our previous work which
established that clusters can improve the robustness of a ESN for feedforward
architectures [3]. We observe a novel class of reservoir activity we term inter-
mitent that occurs for a large range of clustered reservoir configurations and
exhibits both stable and chaotic dynamics. After evaluating the performance of
all networks on a NARMA benchmark test, the advantages of ESNs displaying
these properties are then discussed.

∗This work was supported by the German BMBF (FKZ 01GQ0420, FKZ 01GQ0830) and
by the EC (NEURO, No. 12788).
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2 Clustered ESNs

ESNs consist of an input population u, reservoir population x and output popu-
lation y. These populations are coupled according to a connection weight matrix
W in for input to reservoir units, a sparse directed connection matrix W res for
connections within the reservoir, W out for connections from reservoir to output
units and W fb from output to reservoir units. The dynamic equations, modified
from [4], are given in Eqn. 1-2, with activation functions f and g chosen as tanh.

x(n) = f
(
Winu(n) +Wresx(n− 1) +Wfby(n− 1)

)
(1)

y(n) = g
(
Woutx(n)

)
(2)

2.1 Setting up clustered reservoirs

In our study, the input is a 1 dimensional vector, which is scaled and shifted to
place it in operating range of the network. The reservoir populations examined
ranged from 50 to 1000 units (see following subsection for more details), chosen
for computational tractability. W in and W fb are both fully connected matrices
with weights drawn from [−1, 1] with uniform probability. The construction of
Wres is outlined below. As for all ESNs, W in, W fb and W res remain fixed for
the duration of the network simulation, ensuring that training did not affect the
structure of the reservoir. Only W out was modified during training, which was
performed by presenting a target signal to an initialized network and calculating
W out as the pseudo-inverse of the product of the observed reservoir state matrix
and target output signal y [4], after discarding some washout period T0 = 100
(dynamics) or 200 (NARMA task).

Clustered reservoirs were generated for a given total reservoir size R, the
number of clusters n and the number of intercluster units per cluster b. Each
cluster had size R/n and sparse connectivity connintra. Intercluster connectiv-
ity was obtained by coupling the first b units of each cluster to each other by
specifying a connectivity matrix of size bR/n and sparse connectivity conninter.
All weights were initially drawn randomly from a uniform probability on [−1, 1]
and rescaled to the defined spectral radius. Here, conninter = conninter = 0.7
and b = 1 unless otherwise stated.

The spectral radius ρ is traditionally used as an indicator of stability of net-
work dynamics, with ρ less than unity being sufficient to ensure stable dynamics.
We examined the effect of ρ on stability of clustered ESNs by increasing ρ from
0.5 to 2 in increments of 0.05.

2.2 Quantifying robustness

Several different methods of quantifying reservoir performance exist [5]. Here, we

experimentally estimated the Lyapunov exponent λ̂ as described previously in
our work on feedforward ESNs [3]. Briefly, positive Lyapunov exponents indicate
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a system where small perturbations lead to exponentially diverging trajectories,
suggestive of a chaotic system.

To relate this to reservoir activity, we also considered the distribution of
dwell times, determined by a sequence consisting of a repeated input impulse
presented with a constant interstimulus interval of 50 timesteps. The up states
were defined as periods during which the activity exceeded a threshold that
was 50% of the maximum normalized activity value. This was repeated for 100
independent realizations of the the same network configuration with zero noise.
The resulting mean and standard deviations for the collected dwell times in the
up state were then assessed.

We observed that three types of response exist: (i) the network showed some
activation that quickly died away (Fig. 1A), having dwell times that had both
low mean and low standard deviation; (ii) the network either never stabilized to
begin with or was unstable after the presentation of the first stimulus (Fig. 1C),
with large mean dwell times and low standard deviation; or (iii) intermittent
behaviour, characterized by highly variable dwell times (Fig. 1B). Intermittent
responses were characterized by fast to instantaneous ignition of clusters of reser-
voir units with maximal reservoir activity.

Importantly, this was in complete contrast to the transient responses ob-
served for feedforward ESNs, where reservoir activity settled at some non-zero
level of background activity that increased with increasing ρ values until satu-
ration of reservoir activity [3], thus characterizing a new class of ESN dynamics.

Fig. 1: Normalized total reservoir activity in response to a identical stimulus
with fixed frequency for (a) stable, (b) intermittent and (c) chaotic activity.
Dwell time is determined as the duration for which the response was larger than
threshold θ50, set to be 50% of the maximum for total reservoir activity.

3 Results

3.1 Reservoir dynamics

To test how the responses change as the spectral radius is increased, we analysed
a reservoir of 200 units, increasing ρ from 0.5 to 2 in 0.05 increments. Clusters
were then introduced for n = {1, 2, 4, 5, 8, 10, 20, 25, 50, 100} and we estimated

the dwell times and the Lyapunov exponents λ̂ from 100 realizations of each
reservoir configuration. (Fig. 2A-C). All reservoir configurations with ρ ≤1 had

stable responses, characterized by negative λ̂ and dwell time distributions with
low mean and low variability. As for all ESNs, reservoir dynamics become chaotic
with increasing ρ. However, the presence of clusters increased the spectral radius
value for which this transition occurred (indicated by dotted line in Fig. 2C)
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Fig. 2: Reservoir activity for mean (left columns) and standard deviation (mid-
dle) of dwell times, and Lyapunov exponent (right). (A-C) Distributions of

normalized reservoir activity values and the pseudo-Lyapunov exponent λ̂ as ρ
increased for R=200. Dashed line in (C) indicates the λ̂=0 contour. Values in
(C) have been clipped to minimum value. (D-F) Dwell times and Lyapunov ex-
ponent estimate for collection of reservoir size and cluster configuration for fixed
ρ=1.2. R taken for {50, 100, 200, 500, 750, 1000}. White lines indicate fixed reser-
voir size and dots indicate network configuration tested, interpolation is used to
visualize trend.

resulting in reservoirs 20 ≤ n ≤ 40 clusters having the largest spectral radius
range for stable dynamics.

Intermittent dynamics were observed during the transition from stable to
chaotic dynamics as ρ was increased, but only for clustered reservoirs. Interest-
ingly, although the variability of dwell times to a repeated stimulus was high,
the Lyapunov exponent was negative, indicating that intermittent dynamics are
not classically chaotic.

The impact of total reservoir size on dynamics was investigated by consid-
ering reservoirs of 50 to 1000 units using a fixed spectral radius value ρ = 1.2
(Fig 2D-F). We observed that the resulting dynamic regime was determined by
a combination of the absolute reservoir size, absolute cluster size and the num-
ber of clusters. As observed for R=200, networks with fewer but larger clusters
proved to have the strongest tendency to enter chaotic regimes when ρ > 1, while
the configurations that transitioned most slowly through the different responses
had relative cluster sizes that were 1-5% of the total reservoir size.
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3.2 Performance on NARMA prediction

The performance of clustered ESNs was tested using the 10th order NARMA
system, given in Eqn. 3, a non-linear prediction task commonly used to bench-
mark ESNs [4]. Driving the system with u(t) randomly drawn from [-0.1,0.5],
we evaluated network performance using normalized root mean squared error
(NRMSE ). Our results for reservoirs with 200 units (Fig 3A-B) confirm that
the best performance is achieved when ρ ≈ 1 with NRMSE lowest for reservoirs
when n ≤ 10, although these networks displayed the highest NRMSE values as
ρ was increased to 2.

Trends for performance and stability as cluster configurations were varied
are simultaneously plotted in Fig 3C. Both plots demonstrate inflections for
clustered configurations and that these occur for the same number of clusters.
Furthermore, the contours reveal that while the trends for stability and perfor-
mance are first inversely correlated for clustered networks (10 ≤ n ≤ 50) as ρ
is increased from 1, this is reversed as the ρ ' 1.5. This clarifies that clustered
reservoirs perform similarly to homogeneous reservoirs but for larger values of
ρ; importantly, the degradation of performance and stability also occurs more
gradually. Thus, while traditional ESNs may achieve the lowest error rates, clus-
tered ESNs perform comparably and across a broader range of spectral radius
values, resulting in a slower transition to a chaotic regime.

d(n+ 1) = 0.3d(n) + 0.05d(n)

[
9∑

i=0

d(n− i)

]
+ 1.5u(n− 9)u(n) + 0.1 (3)

Fig. 3: Average NRMSE for 100 instances of each cluster configuration, calcu-
lated during (A) training and (B) testing, obtained for reservoir R=200. Plots

have been clipped to maximum value. (C) Contour plots for both λ̂ (dashed)

and NRMSE test (solid). Thicker lines indicate λ̂=0 and NRMSE test=1,2.

4 Conclusion and future work

Using clustered ESNs we established that, when feedback is present, network
stability and dynamics also depend on the relative cluster size as the spectral
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radius is increased, similar to feedforward ESNs [3]. We demonstrate that in-
termediate cluster sizes display the most robust performance as spectral radius
is increased. However, although the spectral radius has previously been used to
characterize stability, it is not an absolute predictor [5], and is to some extent
input-dependent. Therefore, as clustered reservoirs demonstrate more tolerance
for large values of the spectral radius, they allow greater flexibility in parameter
choice than homogeneous reservoirs (equivalent here to n=1).

Importantly, our results also display a novel type of reservoir activity: in-
termittent responses, which were characterized by highly dynamic responses to
a fixed stimulus. Occurring during the transition of stable to chaotic dynam-
ics for cluster configurations with intermediate cluster sizes and a high spectral
radius values (ρ > 1), their activity suggests that they may lie at the edge
of chaotic dynamics, supported by their negative pseudo-Lyapunov exponents
and highly variable dwell times. The presence of intermittent activity suggests
the existence of architectures that allow both stable (input-driven) and chaotic
(self-sustained) activity. As we observed that reservoirs with identical cluster
configurations but different weight values displayed a different distribution of
dwell times, this suggests that further factors contribute. Nevertheless, we con-
clude that both clusters and feedback are necessary, since intermittent activity is
absent for all spectral radius values when the reservoir is homogeneous and was
never observed when feedforward clustered ESNs were similarly investigated.

The exploitation of chaotic activity has recently been suggested by devis-
ing a learning rule that exploits self-sustained activity in feedback networks to
generate coherent patterns of activity from chaotic ESNs [6]. However, such
architectures offer no opportunity to return to an input driven regime without
retraining; thus it would be advantageous to have an architecture that supports
both input-driven and self-sustained regimes during runtime. This could be eas-
ily achieved by gating clusters to provide either type of activity as required.
Here, we have made the first steps in the identification of specific factors of a
reservoir that facilitate intermittent activity and thereby shift between stable
and chaotic regimes.
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