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Abstract. Multilayer perceptrons (MLP) with one hidden layer have
been used for a long time to deal with non-linear regression. However,
in some task, MLP’s are too powerful models and a small mean square
error (MSE) may be more due to overfitting than to actual modelling.
If the noise of the regression model is Gaussian, the overfitting of the
model is totally determined by the behavior of the likelihood ratio test
statistic (LRTS), however in numerous cases the assumption of normality
of the noise is arbitrary if not false. In this paper, we present an universal
bound for the overfitting of such model under smooth assumptions, this
bound is valid without Gaussian or identifiability assumptions. The main
application of this bound is to give a hint about determining the true
architecture of the MLP model when the number of data goes to infinite.

1 Introduction

Feed-forward neural networks are well known and popular tools to deal with non-
linear regression models. We can describe MLP models as a parametric family of
regression functions. White [7] reviews statistical properties of MLP estimation
in detail. However he leaves an important question pending i.e. the asymptotic
behavior of the estimator when the MLP in use has redundant hidden units. If
we assume that the noise is Gaussian it is well known that the Least Square
Estimator (LSE) and the Maximum Likelihood Estimator (MLE) are equivalent
and Amari et al. [1] give several examples of the behavior of MLE in case of
redundant hidden units. Moreover, if n is the number of observations, Fukumizu
[2] shows that, for unbounded parameters and Gaussian noise, LRTS can have an
order lower bounded by O(log(n)) instead of the classical convergence property
to a χ2 law. In the same spirit, Hagiwara and Fukumizu [3] investigate relation
between LRTS divergence and weights size in a simple neural networks regression
problem.

Even if Gaussian assumption for the noise is standard, it may be not suitable
for some models. This assumption is false, for example, when the range of
observations is known to be bounded, since Gaussian variables can be arbitrary
large in absolute value, even if the probability of such events is small. Hence,
we need a theory which gives evaluation of the overfitting of MLP regression
without knowing the density of the noise and which works even if the model is
not identifiable.

In this paper, we prove an inequality bounding the MSE difference between
the true model and an over-determined model, this inequality shows that, un-
der suitable assumptions, the asymptotic overfitting of the MSE is bounded in

251

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.



probability. Moreover, this bound shows that suitable penalized MSE criteria
allow to select asymptotically the true model. The paper is organized as follows:
In section 2 we state the model, section 3 presents our main inequality and in
section 4 we apply this inequality to select the optimal architecture of the MLP
model.

2 The model

Let x = (x(1), · · · , x(d))T ∈ R
d be the vector of inputs and

wi := (wi1, · · · , wid)
T ∈ R

d be a parameter vector for the hidden unit i. MLP
function with k hidden units can be written :

fθ(x) = β +

k∑
i=1

aiφ
(
wT

i x+ bi
)
,

with θ = (β, a1, · · · , ak, b1, · · · , bk, w11, · · · , w1d, · · · , wk1, · · · , wkd) the parame-
ter vector of the model and φ a bounded transfer function, usually a sigmoid func-
tion. Note that we consider only real functions, extension to vector-valued func-
tions is straightforward but not discussed in this paper. Let Θk ⊂ R

k×(d+2)+1

be a compact (i.e. closed and bounded) set of possible parameters, we consider
regression model S = {fθ(y, x), θ ∈ Θk} with

Y = fθ(X) + ε (1)

X is random input variable and ε is the noise of the model. Let n be a strictly
positive integer, we assume that the observed data (x1, y1) , · · · , (xn, yn) come
from a true model (Xi, Yi)i∈N,i>0 of which the true regression function is fθ0,

for an θ0 (possibly not unique) in the interior of Θk. In the sequel, we write P
the probability distribution of (Xi, Yi).

2.1 Estimation of MLP regression model

The main goal of non-linear regression is to give an estimation of the true pa-
rameter θ0 thanks to observations ((x1, y1), · · · , (xn, yn)). This can be done by
minimizing the MSE function:

En(θ) :=
1

n

n∑
t=1

(yt − fθ(xt))
2

(2)

with respect to parameter vector θ ∈ Θk. The parameter vectors θ̂n realizing the
minimum will be called Least Square Estimator (LSE). Note that parameters
realizing the true distribution function may belong to a non-null dimension sub-
manifold if number of hidden units is overestimated. Suppose, for example, we
have a multilayer perceptron with two hidden units and the true function fθ0 is
given by a perceptron with only one hidden unit, say fθ0 = a0 tanh(w0x), with
x ∈ R. Then, any parameter θ in the set:

{θ |w2 = w1 = w0, b2 = b1 = 0, a1 + a2 = a0 }
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realizes the function fθ0. Hence, classical statistical theory for studying the LSE
can not be applied because it requires the identification of the parameters (up
to a permutation).

In the next section, we will compare MSE of over-parameterized models
against MSE of the true model :

1

n

n∑
t=1

(yt − fθ(xt))
2 − 1

n

n∑
t=1

(yt − fθ0(xt))
2
= En(θ)− En(θ

0). (3)

3 A general bound for the MSE

For an square-integrable function g(X,Y ) the L2 norm is:

‖g(X,Y )‖2 :=

√∫
g2(x, y)dP (x, y),

for λ > 0, let us define the generalized derivative function :

dλθ (X,Y ) =

e−λ(Y −fθ(X))2−e
−λ(Y −f

θ0
(X))2

e
−λ(Y −f

θ0
(X))2

‖ e−λ(Y −fθ(X))2−e
−λ(Y −f

θ0
(X))2

e
−λ(Y −f

θ0
(X))2

‖2
=

e−λ((Y−fθ(X))2−(Y−fθ0 (X))2) − 1

‖e−λ((Y−fθ(X))2−(Y−fθ0 (X))2) − 1‖2
(4)

and let us define
(
dλθ
)
− (x, y) = min

{
0, dλθ (x, y)

}
. For now, let us assume that

dλθ is well defined, this point will be discuss later. We can state the following
inequality:

Inequality :
for λ > 0,

sup
θ∈Θk

n× (En(θ
0)− En(θ)

) ≤ 1

2λ
sup
θ∈Θk

∑n
i=1 d

λ
θ (xi, yi)∑n

i=1

(
dλθ
)2
− (xi, yi)

(5)

Proof :
We have

n× (En(θ
0)− En(θ)

)
=

1
λ

∑n
i=1 log

(
1 + ‖ e−λ(Y −fθ(X))2−e

−λ(Y −f
θ0

(X))2

e
−λ(Y −f

θ0
(X))2

‖2dλθ (xi, yi)

)
≤ sup

0≤p≤‖ e−λ(Y −fθ(X))2−e
−λ(Y −f

θ0
(X))2

e
−λ(Y −f

θ0
(X))2

‖2

1
λ

∑n
i=1 log

(
1 + pdλθ (xi, yi)

)
≤ supp≥0

1
λ

(
p
∑n

i=1 d
λ
θ (xi, yi)− p2

2

∑n
i=1

(
dλθ
)2
− (xi, yi)

)
.

Since for any real number u, log(1 + u) ≤ u − 1
2u

2−. Finally, replacing p by the
optimal value, we found

n× (En(θ
0)− En(θ)

) ≤ 1
2λ

∑n
i=1 dλ

θ (xi,yi)
∑n

i=1(dλ
θ )

2

−(xi,yi)

�

253

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.



This inequality allows to prove that n × (En(θ
0)− En(θ)

)
is bounded in

probability under simple assumptions. It is used in the next section to prove
consistency of an estimator of the number of hidden unit using penalized MSE
criterion.

4 Estimation of the number of hidden units.

Let k0 be the minimal number of hidden units needed to realize the true regres-
sion function fθ0 . In this section, the set Θ of possible parameters will be set
to

Θ = ∪K
k=1Θk,

where K is a, possibly huge, fixed constant: The maximum number of hidden
units for MLP models. We define the minimum-penalized MSE estimator of k0,
as the minimizer k̂ of

Tn(k) = min
θ∈Θ

(En(θ) + an(k)) (6)

Let us assume the following assumptions:

(A1) an(.) is increasing, n× (an(k1) − an(k2)) tends to infinity as n tends to
infinity, for any k1 > k2 and an(k) tends to 0 as n tends to infinity for any
k.

(A2) It exists λ > 0 so that
{
dλθ , θ ∈ Θ

}
is a Donsker class (see van der Vaart

[6]).

We now have:
Theorem :
Under (A1) and (A2), k̂ converges in probability to the true number of hidden
units k0.
Proof :
By applying the inequality,

P (k̂ > k0) ≤∑K
k=k0+1 P

(
Tn(k) ≥ Tn(k

0)
)
=∑K

k=k0+1 P
(
n
(
supθ∈Θk0

En(θ) − supθ∈Θk
En(θ)

)
≥ n

(
an(k)− an(k

0)
)) ≤∑K

k=k0+1 P

(
1
λ supθ∈Θk

∑n
i=1 dλ

θ (xi,yi)
∑

n
i=1(dλ

θ )
2

−(xi,yi)
≥ n

(
an(k)− an(k

0)
))

Now, under (A2)

supθ∈Θk

1

n

(
n∑

i=1

dλθ (xi, yi)

)2

= OP (1)

where, Op(1) means bounded in probability. Moreover, under (A2) the set{(
dλθ (xi, yi)

)2}
is Glivenko-Cantelli (the set admits an uniform law of large
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numbers). Hence

inf
θ∈Θk

1

n

n∑
i=1

(
dλθ (xi, yi)

)2
−

n→∞−→ inf
θ∈Θk

‖ (dλθ (X,Y )
)
− ‖22

But infθ∈Θk
‖ (dλθ (X,Y )

)
− ‖2 > 0, since the random variable dλθ (X,Y ) is cen-

tered and ‖dλθ (X,Y )‖2 = 1. Then, we get :

1

λ
sup
θ∈Θk

∑n
i=1 d

λ
θ (xi, yi)∑n

i=1

(
dλθ
)2
− (xi, yi)

= OP (1)

and P (k̂ > k0) tends to 0 as n tends to infinity.
Finally,

P (k̂ < k0) ≤
k0−1∑
k=1

P

(
sup
θ∈Θk

En(θ)− En(θ
0)

n
≥ an(k)− an(k

0)

n

)

and supθ∈Θk

En(θ)−En(θ
0)

n converges in probability to

sup
θ∈Θk

E
(
En(θ)− En(θ

0)
)
< 0

since k < k0, so k̂
P−→ k0 �

The assumption (A1) is fairly standard for model selection, in the Gaussian
case (A1) will be fulfilled by the BIC criterion. The assumption (A2) is more
difficult to check. First we note:(

e−λ((Y−fθ(X))2−(Y−fθ0 (X))2) − 1
)2

=

e−2λ((Y −fθ(X))2−(Y−fθ0 (X))2) − 2e−λ((Y−fθ(X))2−(Y−fθ0 (X))2) + 1

So, dλθ is well defined if E
[
e−2λ((Y−fθ(X))2−(Y−fθ0 (X))2)

]
< ∞, but

(Y − fθ(X))2 − (Y − fθ0(X))2 =
(Y − fθ0(X) + fθ0(X)− fθ(X))2 − (Y − fθ0(X))2 =
2ε(fθ0(X)− fθ(X)) + (fθ0(X)− fθ(X))2

where ε = Y − fθ0(X) is the noise of the model. Since an MLP function is
bounded, dλθ is well defined if λ > 0 exists such that eλ|ε| < ∞ i.e. ε admits
exponential moments. Finally, using the same techniques of reparametrization
as in Rynkiewicz [5], assumption (A2) can be shown to be true for MLP models
with sigmöıdal transfer functions, if the set of possible parameters Θ is compact.
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5 Conclusion

Summary of the findings. This paper shows that the overfitting of MLP regres-
sion models is moderate for a large number of application without any Gaussian
assumptions on the noise. Note that we assume in this paper that the norm of
the weights of the MLP are a priori bounded by a possibly huge constant. In
this framework, the user can select the true number of hidden units thanks to
penalized means square criteria similar to BIC. So, if the user seeks to minimize

En(θ) +D × log(n)

n

where D is proportional to the number of hidden units of the models and n the
number of observations, then the true number of hidden units will be automat-
ically selected if n is large enough.

As a conclusion MLP regression is widely used and always a very competitive
method (see Osowski et al. [4]), however their is a lack of theoretical justification
for determining the true architecture and especially the number of hidden units.
Indeed, the classical asymptotic theory fails when the model is not identifiable.
In this paper, we prove an inequality showing that overfitting of MLP is moderate
if the noise admits exponential moments and the parameters of the model are a
priori bounded. This bound justifies the use of penalized criterion similar to the
BIC criterion in order to fit the architecture of MLP models in the framework of
regression without knowing the density of the noise. Finally, a more challenging
task may be to get a more precise tuning of penalization term which, according
to our result, can be chosen among a wide range of functions.
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