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Abstract. Fisher Discriminant Analysis (FDA) is a powerful and popu-
lar method for dimensionality reduction and classification which has unfor-
tunately poor performances in the cases of label noise and sparse labeled
data. To overcome these limitations, we propose a probabilistic framework
for FDA and extend it to the semi-supervised case. Experiments on real-
world datasets show that the proposed approach works as well as FDA in
standard situations and outperforms it in the label noise and sparse label
cases.

1 Introduction

Fisher Discriminant Analysis (FDA) [1, 2], also known as LDA by misnomer,
is a commonly used method for linear dimensionality reduction in supervised
classification. FDA aims to find a linear subspace that well separates the classes
in which a linear classifier (usually LDA) can be learned. In this paper, FDA
will therefore refer to the strategy which first finds a discriminative subspace and
then classify the data in this subspace using LDA. FDA is a popular method
which works very well in several cases. However, FDA does have some very
well-known limitations. In particular, FDA produces correlated axes and its
prediction performances are very sensitive to outliers, unbalanced classes and
label noise. Moreover, FDA has not been defined in a probabilistic framework
and its theoretical justification can be obtained only under the homoscedastic
assumption on the distribution of the classes.

Many authors have proposed different ways to deal with these problems and
a first probabilistic framework has been proposed by Hastie et al. [3] by consid-
ering the different classes as a mixture of Gaussians with common covariance
matrices. In 1998, Kumar et al. [4] have rewritten the Fisher’s problem through
a probabilistic framework constrained on the vector mean and the covariance
matrix of the latent space. More recently, Ioffe [5] has proposed a probabilistic
approach for LDA and in the same year, Yu et al. [6] have adapted the framework
of probabilistic principal component analysis (PPCA) developed by Tipping et

al. [7] in a supervised context and have found that the maximum likelihood of
their approach is equivalent to the one of FDA in the homoscedastic context.
Besides, Zhang et al. [8] have presented an extension of the Yu’s work by consid-
ering the heteroscedastic case in a supervised and semi-supervised context which
implies that the linear transformation is different for each class.

In this paper, we propose a supervised classification method, called Proba-
bilistic Fisher Discriminant Analysis, based on a Gaussian parametrization of the
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data in a latent orthonormal discriminative subspace with a low intrinsic dimen-
sion. This probabilistic framework enables to relax the homoscedastic assump-
tion on the class covariance matrices and allows its use in the semi-supervised
context. Numerical experiments show that PFDA improves predictive effective-
ness in the cases of label noise and semi-supervised contexts.

2 Probabilistic Fisher Discriminant Analysis

2.1 The probabilistic model

Let us consider a complete training dataset {(y1, z1), ..., (yn, zn)} where y1, ..., yn

are independent realizations of an observed random vector Y ∈ R
p and zi ∈

{1, . . . , K} indicates the class label of yi. Let us first assume that there exists
a latent subspace E of dimension d < p such that 0 ∈ E and that E best
discriminates the classes. Moreover, {(x1, . . . , xn)} ∈ E denote the actual data in
the latent space E which are presumed to be independent unobserved realizations
of a random vector X ∈ E. Finally, let us assume that Y and X are linked
through a linear relationship of the form:

Y = UX + ε. (1)

where U is a p × d orthonormal matrix, X ∈ E is the latent random vector and
ε is a noise term. We further assume that:

X |Z=k ∼ N (µk, Σk) and ε|Z=k ∼ N (0, Ψk). (2)

where µk ∈ E and Σk ∈ R
d×d are respectively the mean and the covariance ma-

trix of the kth class in the latent space. In conjunction with equation (1),
these assumptions imply that the marginal probability distribution of Y is
Y |Z=k ∼ N (mk, Sk) where mk = Uµk and Sk = UΣkU t+Ψk are respectively the
mean and covariance matrix of class k in the observation space. We also define
πk = P (Z = k) as the prior probability of class k. Let us introduce W = [U, V ]
a p× p matrix which satisfies W tW = WW t = Ip and for which the p× (p− d)
matrix V is the orthonormal complement of U defined above. Finally, we assume
that the noise covariance matrix Ψk satisfies the conditions V ΨkV t = βkIp−d

and UΨkU t = 0d, such that ∆k = W tSkW = diag(Σk, βkIp−d). Then, given
these assumptions, the log-likelihood of the dataset is:

L(θ) = −
1

2

K
∑

k=1

[

−2 log(πk) + trace(Σ−1

k U tCkU) + log(|Σk|)

+ (p − d) log(βk) +
1

βk

(

trace(Ck) −
d

∑

j=1

ut
jCkuj

)

+ γ
]

.

(3)

where Ck is the empirical covariance matrix of the kth class, uj is the jth column
vector of U and γ = p log(2π) is a constant term.
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This model will be referred to by [Σkβk] in the sequel. In order to obtain
more parsimonious models, Σk or βk can be constrained between and within the
classes and it is possible to decline 12 different models. A detailed description
of those models in the unsupervised context can be found in [9]. Besides, in
this paper, 4 models will be considered: the general model [Σkβk], the [Σkβ]
model which assumes an isotropic variance in the residual space (∀k, βk = β),
the [αkjβk] model which supposes a diagonal covariance matrix in the latent
space in each class (Σk = diag(αk1, . . . , αkd)) and finally the [αkjβ] model which
assumes both a diagonal covariance matrix in the latent space and a common
variance in the residual space.

2.2 Parameter estimation

Conversely to the probabilistic approaches reviewed in Section 1, the probabilis-
tic model presented above is very general and there is no explicit solution for the
likelihood maximization with respect to U . Therefore, we propose to estimate
the linear transformation U and the model parameters in two different steps.
Firstly, the estimate Û of the latent subspace orientation U is obtained through
the optimization of the Fisher criterion with respect to the orthogonality of its
column vectors,

max
U

tr
(

(U tSU)−1U tSBU
)

wrt U tU = Id, (4)

where SB = 1

n

∑K

k=1
nk(mk − ȳ)(mk − ȳ)t and S = 1

n

∑n

i=1
(yi − ȳ)(yi − ȳ)t

are respectively the between and the total covariance matrices with mk =
1

nk

∑n

i=1
1{zi=k}yi, nk =

∑n

i=1
1{zi=k} and ȳ = 1

n

∑n

i=1
yi. Secondly, given

U = Û and in conjunction with equation (4), the maximization of the log-
likelihood (3) conduces to the following estimates of the model parameters:

µ̂k =
1

nk

n
∑

i=1

1{zi=k}Û
tyi, Σ̂k = Û tCkÛ , β̂k =

tr(Ck) −
∑d

j=1
ût

jCkûj

p − d
. (5)

Finally, the intrinsic dimension d is set to the rank of SB ≤ K − 1 (see [2]).

2.3 Classification of new observations

In the discriminant analysis framework, new observations are usually assigned
to a class using the maximum a posteriori rule which assigns a new observation
y ∈ R

p to the class for which y has the highest posterior probability P (Z =
k|Y = y). Maximizing the posterior probability is equivalent to minimizing the
cost function Γk(y) = −2 log(πkφ(y; mk, Sk) which is for our model equal to:

Γk(yi) =
∥

∥UU t(yi − mk)
∥

∥

2
ϑk

+
1

βk

∥

∥(yi − mk) − UU t(yi − mk)
∥

∥

2

+ log(|Σk|) + (p − d) log(βk) − 2 log(πk) + p log(2π),

(6)

where ϑk = [U,0p−d] ∆
−1

k [U,0p−d]
t

and ‖.‖ϑk
is a norm on the latent space

spanned by [U,0p−d] such that ||y||2ϑk
= ytϑky.
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Fig. 1: Effect of label noise in the learning dataset on the prediction effectiveness.

2.4 Extension to the semi-supervised context

Let us consider now that {(yi, zi)}
nℓ

i=1
where nℓ ≤ n are the labeled data and there

are n−nℓ unlabeled data referred to by {yi}n
i=nℓ+1. The nℓ labeled observations

are modeled by the probabilistic framework developed in Section 2.1 and the
unlabeled data are modeled by a mixture model parametrized by πk, the mixture
proportion of the class k, and θk = (mk, Sk), respectively its mean vector and
its covariance matrix. Thus, the log-likelihood can be written as:

L(θ) =

nℓ
∑

i=1

K
∑

k=1

1{zi=k} log (πkφ(yi; θk)) +
n

∑

i=nℓ+1

log(
K

∑

k=1

πkφ(yi; θk)) (7)

In such a case, the direct maximization of L(θ) is intractable and an iterative
procedure have to be used. Therefore, we use the Fisher-EM algorithm proposed
by [9] which alternates 3 steps: an E-step which computes the posterior proba-
bilities, a F-step which estimates the linear transformation and a M-step which
estimates the parameters of the mixture model.

3 Experiments

3.1 Robustness to label noise

This first experiment aims to study the robustness to label noise of PFDA and
to compare it with traditional methods such as FDA and orthonormalized FDA
(OFDA) [10]. Two different models of the PFDA approach are here considered,
the [Σkβk] and [αkjβ] models and their robustness to label noise is compared
to FDA and OFDA. For this experimentation, a wink to the work of Sir R.
A. Fisher is given since we apply here PFDA to the iris dataset. This dataset
consists of 3 classes of 50 observations corresponding to different species of iris
(setosa, versicolor and virginica) which are described by 4 features relative to the
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model chironomus wine iris usps358

PFDA [Σkβk]

[Σkβ]

[αkjβk]

[αkjβ]

96.1± 2.8

97.0± 2.6

97.1± 2.1

96.8± 3.8

96.9± 1.4

96.1± 1.6

97.3± 1.5

96.3± 1.8

92.2± 2.8

96.9± 2.5

92.7± 4.1

96.6± 1.8

61.9 ± 4.3

90.7 ± 0.5

66.2 ± 5.4

91.5 ± 1.0

SELF 92.5± 2.5 93.9± 3.0 93.1± 6.9 92.3± 0.8

FDA 87.7± 7.2 93.4± 2.9 95.8± 2.9 44.1 ± 3.4

OFDA 85.6± 8.3 90.9± 4.5 96.2± 2.5 40.8 ± 4.5

Table 1: Prediction accuracies and their standard deviations (in percentage) on
the UCI datasets averaged on 25 trials.

length and the width of the sepal and the petal. Since the aim of this experiment
is to evaluate the robustness to label noise, let us define τ the percentage of false
labels in the learning set which varies between 0 and 0.9. At each trial, the iris
dataset is randomly divided in 2 balanced samples: a learning set in which a
percentage τ of the data is mislabeled and a test set on which the prediction
performances of the 4 methods are evaluated. This process has been repeated
50 times for each value of τ in order to monitor both the average performances
and their variances. Figure 1 presents the evolution of correct classification rate
computed on the test set for the 4 methods according to τ . First of all, it can be
observed that the FDA and OFDA methods are comparable since their curves are
almost superimposed and their classification rates lower drastically and linearly
until τ = 0.7 where their prediction performances are comparable to those of a
random classifier. Conversely, the [Σkβk] and [αkjβ] models of PFDA appear
robust to label noise since their correct classification rates remain superior to
0.8 for a label noise up to τ = 0.6. These improvements can be explained by
the PFDA framework which takes into account an error term and this avoids to
overfit the embedding space on the labeled data and remains generally enough
to be robust on label noise contrary to FDA and OFDA.

3.2 Semi-supervised context

This second experiment will focus on comparing on 4 real-world datasets the
efficiency of semi-supervised approaches with traditional supervised ones. Four
different models of PFDA ([Σkβk], [Σkβ], [αkjβk] and [αkjβ]) are compared
with a recent semi-supervised local approach of FDA proposed by [11]. This ap-
proach, called SELF, aims to find a discriminative subspace by considering both
global and class structures. Besides, the experiment includes the 2 supervised
approaches previously seen in Section 3.1 (FDA and OFDA). The comparison
has been made on 4 different benchmark datasets coming from the UCI machine
repository: the chironomus, the wine, the iris and the usps358 datasets. They
are all made of 3 classes, but the first three datasets contain respectively 148,
178 and 150 observations whereas the usps358 data contain 1756 individuals.
Finally, the respective dimension of each dataset is as following: the irises are
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described by 4 variables, the wines by 13, the chironomus by 17 and the usps358
by 256 variables. Moreover, each dataset has been randomly divided 25 times
in 2 samples composed by a learning set and a test set containing 50% of the
data each. Moreover, in the learning set, 30% of data are randomly selected
to constitute the known labeled data. For the experiment, the algorithms are
initialized on parameters estimated on the known labeled data and then, the
modeling of the data has been made on the learning set of labeled and unlabeled
data. Table 1 presents the average correct classification rate and the associated
standard deviations obtained for the 5 studied methods. First of all, one can
notice that the semi-supervised methods always improve the prediction accuracy
and outperform FDA and OFDA. This can be explained by the fact that the
supervised methods estimate the embedding space only on the labeled data and
thus overfit it. Conversely, the semi-supervised methods use also unlabeled data
in their estimation of the discriminative subspace which enables them to be of-
ten more effective. Furthermore, most of PFDA models present the best correct
classification rates except for the usps358 dataset where the SELF algorithm
reaches 92.3% of classification accuracy.

4 Conclusion

This paper has presented a probabilistic framework for FDA and has shown
that the proposed PFDA method works as well as the traditional FDA method
in standard situations and it improves clearly the modeling and the prediction
when the dataset is subject to label noise or sparse labels. The practitioner may
therefore replace FDA by PFDA for its daily use.
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