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Abstract. A general method is presented for the assessment of data
attribute variability, which plays an important role in initial screening of
multi- and high-dimensional data sets. Instead of the commonly used sec-
ond centralized moment, known as variance, the proposed method allows
a mathematically rigorous characterization of attribute sensitivity given
not only Euclidean distances but partial data comparisons by general sim-
ilarity measures. Depending on the choice of measure different spectral
features get highlighted by attribute assessment, this way creating new im-
age segmentation aspects, as shown in a comparison of Euclidean distance,
Pearson correlation and γ-divergence applied to multi-spectral images.

Keywords. Unsupervised attribute assessment, partial generalized
correlation, distance pursuit.

Multi- and hyper-spectral image acquisition systems going beyond the RGB
color space, such as acquired by liquid crystal tunable filters or imaging mass
spectrometry, provide a wealth of data that impose challenges on the analy-
sis, because of the size, the complexity, and the typically non-Euclidean na-
ture of spectral data sets [1]. Recent work allows to effectively address the
size problem by employing multi-CPU or GPU-accelerated computing [5]. Non-
Euclidean nature is addressed by general data similarity measures like Minkowski
distances [2], matrix metrics [3], Pearson correlation [4], or, very recently, diver-
gence measures [6]. In the following metrics, divergence measures, and dissimi-
larities will be addressed as distances in the non-mathematical intuitive way.

Initial data exploration of yet unknown or unlabeled multi-dimensional data
sets often starts with the calculation of basic statistics of the data set attributes,
such as histograms or statistical moments such as mean, variance, skewness and
kurtosis. Relationships between attributes are usually characterized by the co-
variance matrix which is also the main ingredient for principal component analy-
sis (PCA), one of the most widely utilized dimension reduction methods. Along
with variance and covariance quantities come normalization methods like z-score
transformation, i.e. mean-centered attribute divided by attribute variance, and
whitening, i.e. linearly de-correlated attributes with identity covariance matrix.
All these concepts are based on the implicit assumption of underlying Euclidean
data spaces. Particularly the growing popularity of alternative similarity mea-
sures requires a reconsideration of variance quantification. The main reason is
consistency of the analysis pipeline. For example, if clustering based on Pear-
son correlation similarity is desired, it might be adverse to choose standard
PCA for data preprocessing, or z-score normalization of spectral data might
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be prohibited if the main processing part utilizes a divergence measure. Diver-
gences are designed for the comparison of non-negative data, and out of a variety
we concentrate on γ-divergence-measures, because they include the well-known
Kullback-Leibler and Cauchy-Schwarz divergences as special cases.

Here, a very general variational approach is presented for unsupervised assess-
ment of attribute (co-)variability for differentiable metrics or similarity measures
taking real-valued vectors as arguments. Application examples with Pearson
correlation measure and the flexible γ-divergence-measure are provided in the
fruitful domain of multi-spectral image characterization.

1 Assessment of attribute variation

Generally, if two vectors x,w ∈ Rd from a data set are given the key idea pur-
sued here is to measure the minimum efforts needed to transform the variable
vector w into a representation of maximum similarity with the target vector x.
During that optimum transformation, changes of attributes in w are integrated
over and recorded. This procedure, called distance pursuit (DP), can be for-
malized and solved for each data pair of interest in a mathematically rigorous
optimization framework. As a result, the attribute variability explaining a di-
rected relationship of data vectors is quantified for a given data measure. In a
summarization step, all recorded attribute changes are turned into a common
notion of variability analogous to standard covariance for Euclidean distance.

1.1 Distance pursuit

Formally, even for plain vector pairs it is impossible to find closed form analytical
solutions to optimum vector transformation in the general case. Yet, arbitrary
good approximations can be obtained in an iterative way outlined in Algorithm 1.

First, a monotonic distance sequence s = {s0 = d(x,w), . . . , st = dtarget}
from the initial vector distance to the maximum possible degree of similarity
dtarget is created with dtarget = 0 for metrics and divergence measures and

Algorithm 1 distance pursuit DP{b,g}(x, w, t)

1: {input x target vector ; w source vector ; t number of steps}
2: g ← 0 ; b← 0d {initialize target variables}
3: for s← s1 to st {visit distance sequence elements, excluding s0} do
4: v ← arg minw∗ |s− d(x,w∗)| {optimum vector at s, starting at w∗ = w}
5: ∆← v −w {differential displacement}
6: w ← w + ∆ {move on to identified location w = v}
7: b← b + ∆ {integrate changes per attribute}
8: g ← g +

√
〈∆〉2 {line integral}

9: end for
10: return g, b
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dtarget = 1 for Pearson correlation. An equidistant sampling of t = 10 sub-
intervals, such as done in this work, is pragmatic but not mandatory. The
vector w moves along the minimum path following increasing steps of similarity
towards the target vector x. During the transformation of w, two quantities are
collected: g, the overall line integral summing up path fragment lengths and b,
the integrated differential attribute vector. Thus, a piecewise linear approxima-
tion in d-dimensional Euclidean space is conducted to effectively assess attribute
properties of the data under the distance measure of interest.

Line 4 of the Algorithm 1 provides the important identification of the next
position of vector w for getting a bit more similar to vector x. Gradient-based
optimization methods can be used for minimizing the distance discrepancies
between the current position and the next step of the target distance imposed
by line 3. For distances d(x,w∗), such as the ones listed in Table 1 being utilized
in this work, the gradient of the arg min operation, required for optimization, is

δ = −sign(s− d(x,w∗)) · ∂d(x,w∗)/∂w∗ . (1)

Alternatively, a least squares expression can be employed in line 4, but it tends
to generate numerical underflows during convergence.

Common gradient-based methods find zero discrepancy solutions desired in
line 4. Yet, since optima for reaching a given similarity s are not unique, only
minimum norm results for ∆ are valid to get minimum path lengths. Else, for
example with Minkowski metrics usually two points along the search line would
yield valid optima at distance s to the target vector x. Possible oscillations would
be integrated out in line 7 for attribute variability, but the line integral in line 8,
based on repeated calculations of 〈∆〉2 := 〈∆, ∆〉, would be over-estimated.

Different gradient-based optimizers were tried using a reference implementa-
tion of Minkowski metrics with line integrals being standard Euclidean distance
and attribute variability being standard variance, irrespective of the choice of
the metric order p. Memory-limited Broyden-Fletcher-Goldfarb-Shanno turned
out to provide the best mix of speed, memory requirement, and accuracy, in
comparison to full BFGS, conjugate gradients, and steepest gradient descent.

2 Generalized partial covariance

The result of the distance pursuit algorithm is used as building block in a general
formula for measuring attribute variability of data set X = (xlk)l=1...n,k=1...d

with n data vectors (in rows) containing d attributes. The reformulated text
book term of standard variance

σ2
k =

1
n− 1

·
n∑
l=1

(xlk − µk)2 =
1

2 · n · (n− 1)

n∑
i=1

n∑
j=1

(xik − xjk)2 (2)

can be transformed into the generalized partial covariance expression

Vkl =
1
G
·
n∑
i=1

|Ii|∑
j=1

DPbk(xi, xIij , t) · DPbl(xi, xIij , t) , k, l = 1 . . . d . (3)
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These values Vkl quantify the overall attribute contribution of all desired pairs of
data vectors xi connected to vectors indexed by Ii. For each pair, the contribu-
tion of attributes l and k is calculated using the DP algorithm. Thus, Equation 3
quantifies attribute variability given data connectivity and distance measure.

The normalization constant G = 2 · (−z +
∑n
i=1 |Ii|) is twice the num-

ber of pairwise comparisons, excluding the number z of non-contributing self-
comparisons i = Iij . For all pairs of data Ii = {1 . . . n} for i = 1 . . . n this leads
to G = 2·(−n+n2) which yields an unbiased estimation of the variance σ2

k = Vkk
of the k-th attribute for the Euclidean distance. This case allows a connection
to Equation 2, because the DP algorithm yields the simple difference b = xi−xj .

The partial generalized covariance matrix V is necessarily symmetric due to
the commutative calls to DP in Equation 3. This matrix can be used to calculate
the partial generalized correlation matrix R according to the formula

Rkl = Vkl/
√
Vkk · Vll . (4)

For all data pairs and Euclidean distance R contains exactly what could be
calculated much more efficiently with pairwise Pearson correlation from Table 1.
Else, the runtime complexity of DP is O(t ·G ·d2) for covariance and O(t ·G) for
variance which can easily become a bottleneck. Yet, the proposed method allows
custom data connectivities and similarity measures. Euclidean assumptions like
mean values µx of data vectors are not needed, because distance-specific centers
of gravity are implicitly computed by the double sum in Equation 3.

3 Application to multi-spectral image data

Multi-spectral images were acquired by using the Nuance EX camera utilizing
its liquid crystal tunable filter. The filter operates in a visual and near infrared
wavelength range from 450nm to 950nm and has a full width at half maximum
characteristic of 10nm, leading to 51 channels per pixel. Food analysis is impor-
tant for quality control and nutraceutics, thus, a representative multi-spectral
image of a sliced cucumber fruit at a resolution of 416x408 pixels is taken as anal-
ysis target. The two targeted complementary perspectives for partial generalized
attribute variance assessment are: frequency channel correlations involving pairs
of pixels and per pixel variance involving pairs of channels.

Pixel variance is assessed for adjacent channels using the index set Ii = i±1
clipped to valid indices. This requires DP for 100 pairs of channels represented
by one of the 51 frequency-specific monochrome image layers, resulting in an
image of partial generalized variance per pixel. Involving adjacent channels uses
only local differences for detecting more subtle relative changes than by global
comparisons of distant and different frequency channels. This is shown in the
first two images in the top row of Figure 1 changing from standard (i.e. global)
to partial (i.e. local) variance. For Pearson correlation and γ-divergence the
shadow cast rather than the cucumber peel gets emphasized. This is, because
both measures are β-scaling invariant to vectors β ·x and thus optimally aligned
w.r.t. scaling, i.e. being able to highlight variability in non-alignable structures
like noise-containing shadows, which is useful for filtering different aspects.
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Measure Formula d(x,w) =

Minkowski distance (
∑d
i=1 |xi − wi|p)1/p

Pearson correlation 〈x−µx,w−µw〉√
〈x−µx〉2·〈w−µw〉2

γ-divergence log 〈x
γ+1,1〉1/(γ·(γ+1))·〈wγ+1,1〉1/(γ+1)

〈x,wγ〉1/γ

Measure Derivative ∂d(x,w)/∂w =

Minkowski distance −sign(x−w) ◦ |x−w|p−1 · (
∑d
i=1 |xi − wi|p)

1
p−1

Pearson correlation
(

x−µx

〈x−µx,w−µw〉 −
w−µw

〈w−µw〉2

)
· 〈x−µx,w−µw〉√
〈x−µx〉2·〈w−µw〉2

γ-divergence wγ

〈wγ+1,1〉 −
x◦wγ−1

〈x,wγ〉

Table 1: Distance measures and their derivatives. µx and µw denote the mean
values of vectors x and w, respectively; sign refers to the signs of vector com-
ponents; ◦ is the component-wise Hadamard product; vector powers operate as
powers on each vector component; 1 is the d-dimensional vector of ones; 〈·, ·〉 is
the cross product of two vectors; 〈·〉2 is the sum of squares of vector compo-
nents. For Minkowski distance, real values p ≥ 1 are allowed. For Pearson
correlation and its derivative see [4]. For γ-divergence the expression d(x,w)
with vector arguments refers to the discrete version of D(x||w) with density dis-
tributions; the measure and its derivative are discussed in [6], and a choice of
γ ∈ [0; 1] is recommended.

Standard Euclidean Partial Eucidean Partial Pearson corr. Partial γ-divergenceStandard variance
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Fig. 1: Cucumber pixel variance (top row, darker means higher) and frequency
channel correlation (bottom row, brighter means higher) for, f.l.t.r., standard (all
pairs) Euclidean distance and partial (adjacent data pairs) Euclidean distance,
Pearson correlation, and γ-divergence for γ = 0.1.
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Channel correlations are assessed in the 8-neighborhood of each pixel.
The resulting partial generalized correlation matrices of all pairs of 51 channels
are shown in the bottom row of Figure 1. Generally, there are two major clusters
split in the middle (at about channel 25), and the first two channels are a bit
outstanding. The range for partial Euclidean correlation (0.45–1) is a bit larger
than for global correlation (0.59–1). Even richer are the partial correlation pat-
terns for Pearson correlation (range: -0.6–1) and for γ-divergence (range: 0.29–1)
which reveals four clusters along the diagonal line (two large, two small).

4 Conclusions

A generalized way has been presented for calculating partial covariance and
correlation of attributes in multidimensional data for custom data similarity
measures and connectivity structures. It contains standard covariance and cor-
relation of Euclidean data as special cases. For large data sets, the current imple-
mentation in R, available for download at http://mi.informatik.uni-siegen.
de/projects_data/dp.zip, requires extraordinary runtime, because multiple
nonlinear optimizations are required for each compared vector pair. A parallel
version is targeted in near future.

The application to multi-spectral data has shown the ability to provide richer
partial covariance structures by utilizing local comparisons. Furthermore, data
invariance properties of Pearson correlation and γ-divergence allowed to identify
shadow areas rather than interior fruit segments being highlighted by Euclidean
distance. Unsupervised and supervised data analysis tasks along data process-
ing pipelines with other than Minkowski distances will benefit from proposed
method, because the measure-specific assessment of attribute variability is a
very fundamental requirement. Several tightly connected methods like general-
ized whitening operation and PCA are yet to be exploited in future research.

We thank three anonymous reviewers for their constructive comments.
Research is founded by DFG Graduiertenkolleg 1564 ’Imaging new Modalities’.
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