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Abstract. Dealing with the continuous parameters of a feature ex-
traction method has always been a difficult task that is usually solved by
cross-validation. In this paper, we propose an active set algorithm for
selecting automatically these parameters in a SVM classification context.
Our experiments on texture recognition and BCI signal classification show
that optimizing the feature parameters in a continuous space while learn-
ing the decision function yields to better performances than using fixed
parameters obtained from a grid sampling.

1 Introduction

The choice or the design of a kernel plays a primary role on the performance of a
kernel machine such as an SVM or a KFDA. In order to overcome the difficulty
that such a choice may bring, several recent works have investigated approaches
for combining kernels. Multiple kernel learning (MKL) helps in designing ker-
nels functions by jointly learning a decision function and a combination of bases
kernel [1]. Another interesting point of MKL is that, when considered kernels
have parameters, it can be used for model selection by including in the combi-
nation several instances of the same kernel but with different parameter values.
This framework of MKL has been recently extended so as to handle an infinite
number of kernels or kernels with continuous parameters [2].

In this work, we consider a specific case of the kernel method framework
where feature maps are defined explicitly instead of being defined implicitly
through the kernel function. There are many practical situations in which such
a situation occurs. For instance, in face recognition problems, Gabor based
features are extracted using filter convolutions [3]. The problem we address is
thus the problem of automated selection of feature maps in a supervised learning
framework using Support Vector Machines. We consider a situation where the
feature maps involve some parameters (which can be continuous). In such a
situation, the common approach is either to optimize the parameters by cross-
validation (if their number is relatively small) or to fix the parameter values
beforehand. The latter strategy is for instance very common when extracting
Gabor features where scale and frequency are sampled from predefined intervals.

We deal with this problem of feature map parameter selection by fitting the
problem into the framework of feature selection through sparsity-inducing norm.
The main particularity of our problem compared to classical ones [4] is that the
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number of features we have to deal with can be potentially infinite since the
feature parameters are continuous. In some ways, we follow recent works that
learn from an infinite set of kernels [2]. However, by considering feature maps,
we provide an optimization framework that consider the problem in its primal
version from which we derive a simple and efficient active constraint algorithm.
Furthermore, since the problem is still linear in the feature maps, we are able
to deal with a large number of training examples. We show in our experiments
on texture recognition and BCI electro-encephalogram signal classification that
considering features with continuous parameters can yield to better classification
performances than feature with sampled parameters.

2 Selecting from an infinite set of features

We detail in this section the algorithm we develop for dealing with an infinite
set of features as well as examples of such infinite sets.

2.1 The algorithm

Let us formally define the framework of our problem. Consider a set of n training
examples {xi, yi}ni=1 with the data xi belonging to some space X and the labels
yi ∈ {−1, 1}. For instance, in a context of signal or image classification, X
would respectively be R

d or R
d×d. We define a θ-parametrized function φθ(·)

that maps an element of X into Xθ, this function being explicitly known. In this
context, we are looking for a decision function of the form

f(x) =

N∑
j=1

〈wj , φθj (x)〉Xθj
(1)

that is able to predict most accurately as possible the label of a novel example
x. Note that the decision function considers only a finite number N of feature
maps each of which has a parameter value θj . According to Bach et al. [5], this
decision function can be understood as a feature map version of a MKL one.
For performing feature selection, we want some of the wi to vanish. This can
be enforced by a sparsity inducing norm while learning the weight vectors wi

through the minimization of a regularized empirical risk.
Before delving into the details on how we deal with an infinite set of features,

we first describe an efficient active set approach for addressing the finite number
of features case. Let us define w the vector of stacked wj , Φθj the matrix
which rows i are φθj (xi) and Φ the matrix of feature maps, resulting from the
concatenation of the N matrices {Φθj}. Each column of Φ is normalized to unit

norm and Φ̃ = diag(y)Φ, with y being the vector of labels {yi}. We define w as
the solution of the following learning problem where the loss function is a square
hinge loss

min
w,b

J(w) =
C

2n
(1I− Φ̃w)T+(1I− Φ̃w)+ +Ω(w) (2)
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Algorithm 1 Active set method algorithm for SVM finite/infinite feature se-
lection
1: Set A = ∅ initial active set
2: Set w = �0
3: repeat
4: w← solve problem (2) with features from A
5: θ, i← maxi∈Ac ||ri||2
6: if θ > 1 then
7: A = A∪ i
8: end if
9: until θ ≤ 1

where [Φ̃w]i = f(xi), 1I is a unitary vector, (·)+ = max(0, .) is the element-wise
positive part of a vector, Ω is a regularization term that induces sparsity and C
is a trade-off parameter that balances training error and regularization. Typical
sparsity inducing norms are the �1 norm defined as Ω1(w) = ‖w‖1 and the mixed
�1−2 norm Ω1,2(w) =

∑
i ‖wi‖2 which induces sparsity on groups of features.

The optimality condition of problem (2) is −C
n Φ̃

T (1I − Φ̃w)+ + c = �0 where
c is a subgradient of the norm Ω. We focus in the sequel on the the mixed-
norm Ω1,2(w). By definition of the subgradient of the ‖wi‖2 norm and because
Ω1,2(w) is group-separable, it can be shown that the optimality conditions are :

−ri + wi

||wi||2 = �0 ∀i wi �= �0

||ri||2 ≤ 1 ∀i wi = �0
(3)

with ri =
C
n Φ̃

T
i (1I− Φ̃w)+. These conditions suggest an active-set method for

solving the unconstrained optimization problem. Indeed, since the problem is
supposed to have a sparse solution, many wi are expected to be 0 at optimality.
Then, in a block-coordinate descent approach, it seems reasonable to optimize on
variables that violate their constraints while keeping the other fixed and repeat
these procedures as long as some wi violate their optimality constraints. Hence
the algorithm runs as follows : at some given iteration, we have a subset A
of features defined as the active ones and optimize the problem only over wA.
At this point, depending on the value of ri, some of the wi that do belong
to the complementary set Ac may not satisfy their own optimality condition.
Such a violating-constraint feature is added to the active set and optimization
over A is repeated again until all wi satisfy their optimality conditions. Note
that if several wi violate their constraints, the choice of the one to integrate
to the active set impacts on the speed of convergence of the algorithm. While
adding any violating feature or group of features into the active set leads to
decrease the objective value, it is more appropriate to add the most violating
one. This consists in solving the problem maxi∈Ac ||ri||2. The overall procedure
is described in Algorithm 1.

When dealing with the infinite set φθ of features, θ being a continuous pa-
rameter, we cast the problem as min|Θ|<∞minw J(w) where Θ = {θj} is the set
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of feature map parameter values involved in Φ and |Θ| is the cardinality of this
set. This optimization problem searches for a finite number of features {φθj}
which achieves the lowest objective value of J(w). The optimality conditions of
(3) can be readily extended to this infinite case as

−ri + wi

||wi||2 = �0 ∀i wi �= �0 , ||ri||2 ≤ 1 ∀i wi = �0

‖Φ̃T
θs
(1I− Φ̃w)+‖2 ≤ 1 ∀ θs �∈ Θ

(4)

Indeed, it is easy to show that if a feature Φθs violates the third condition then
adding that feature into the finite feature subset leads to a decrease of J(w)
objective value. In the same way, adding a feature Φθs which satisfies this third
condition would not improve the objective value since it would get a zero weight.

From an algorithmic point of view, there is only one major difference when
dealing with finite or infinite set of features. While in the former, it may be
always possible to find the most violating constraint by sweeping all over them,
in the latter case, finding this constraint is a difficult problem since we have to
solve the maximization problem given Line 5 of Algorithm 1. Hence, the strategy
we adopt consists in randomly sampling a given number of feature parameters
{θs}, so as to build a set of candidate features {Φθs}, and then in adding to the
finite set the one among those that violates the most its constraints. Similarly
to the finite case, while not optimal this step always yields to a decrease in the
objective value. Checking for the full optimality of the problem is also difficult
since again one has to verify the third condition of Equation (4). In practice, we
stop the algorithm when the maximal number of iterations is reached or when
the sampling strategy does not return any violating feature.

Either in finite or infinite feature cases, solving Line 4 of the algorithm in-
volves the resolution of problem (2) over the set of active features. Problem
(2) is an unconstrained optimization problem where the loss function is differ-
entiable with L−Lipschitz gradient and the mixed norm Ω1,2 admits a simple
and closed-form proximal operator. Hence, the problem nicely fits into the class
of problem that can be solved efficiently through fast iterative shrinkage thresh-
olding algorithm (FISTA) [6] with some guarantee of convergence.

2.2 Examples of infinite set of features

There exists several feature extraction methods that need parameters tuning. In
this paragraph, we review two of them that are of interest for our experimental
analysis.

Gabor functions based features are typically features that need parameter
tuning. Gabor features are usually built by convolving an image with a Gabor
filter with angle ϕ, frequency f and Gaussian shape σ1, σ2 as parameters. Unlike
usual approaches, instead of fixing these parameters to some predefined values,
our approach is able to select them automatically during the learning process.

In BCI application such as motor imagery signal discrimination task, a com-
mon feature extraction consists in extracting the Power Spectral Density in a
frequency band. Usually the common choice is [8,30] Hz for a motor imagery

330

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.



10
2

10
3

10
4

10
5

0.8

0.82

0.84

0.86

0.88

0.9

Nb of training examples

A
cc

ur
ac

y

# Gabor features = 81

 

 

Finite
Infinite

10
2

10
3

10
4

10
5

0.8

0.82

0.84

0.86

0.88

0.9

Nb of training examples

A
cc

ur
ac

y

# Gabor features = 1296

 

 

Finite

Infinite

Fig. 1: Examples of accuracy performance in the finite and infinite feature cases
with different numbers of sampled features (left) 81. (right) 1296. For these
experiments, C has been set to 10.

task [7] but the choice of these frequency bands might be seen as parameter
tuning in a continuous space.

3 Experiments

We describe in this section some experiments that show that using infinite set
of features may help improving performances by selecting the ones that are
relevant. We consider two real-world applications on texture recognition and
EEG signal classification for Brain-Computer Interface.

The texture recognition problem consists in classifying 16 × 16 patches ex-
tracted from two Brodatz textures D29 and D92. The Gabor features are ob-
tained by computing the inner product of all Gabor functions located at some
pre-defined location and the patch and then by summing the absolute value of
the response. By doing so, we obtain features that are translation-invariant.
When Gabor parameters are sampled, we have a number of features that de-
pends on the number of samples used for each parameter ϕ,f , σ1 and σ2. In
order to be fair, in the infinite feature case, the number of sampled feature con-
sidered for the constraints violation checking problem (Line 5) is equal to the
number of features used in the finite feature Gabor approach. We can see in
Figure 1 that automatically selecting the relevant features from an infinite set
leads to notable increase of performances.

The BCI dataset is the dataset IIa of the BCI competition IV. It consists
of EEG signals of 9 subjects performing motor imagery. The signals have been
acquired over 22 channels. In this study, we want to classify EEG trials of
left/right hand motor imagery movement. For each class, we have 72 trials for
learning and testing. For each trial, we have extracted the time segment from
0.5 to 2.5 seconds after the cue asking the subject to perform motor imagery. As
a fixed feature, we have used the band-pass power over the [8, 30] Hz, while for
our infinite feature algorithm, we allow slight modification of the band-pass filter
since we randomly draw filter which band-pass size of at least 20 Hz included
in [8, 30] Hz. By doing so, we hope that the classifier is able to adjust the most
discriminant frequencies for each subject. In both cases, we perform CSP on the
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Subjects
Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 Avg
CSP [7] 88.89 51.39 96.53 70.14 54.86 71.53 81.25 93.75 93.74 78.01
Fixed 88.19 53.47 96.53 63.89 60.42 69.44 79.17 97.92 93.06 78.01

Random 90.97 52.78 95.14 73.61 62.50 72.92 82.64 97.22 92.36 80.01

Table 1: Classification accuracy on the test set for classical CSP approach, fixed
and random bandpass filter for feature extraction on the BCI dataset.

filtered EEG and include in the cross-validation stage the choice of the number
of CSP filters and regularization parameter C. Results are summarized in Table
1 and they show that the advantage of learning the filter cut-off frequencies. We
should however note that allowing more flexibilities to these cut-off frequencies
leads to overfitting.

4 Conclusion

In this work, we proposed an efficient algorithm for selecting from an infinite
set of features. This approach allows the automated selection of features with
continuous parameters. The optimization problem is handled by an active set
algorithm. At each iteration, the algorithm adds to the active feature set a
relevant feature which is determined according to the optimality conditions of
the problem. The approach was tested on a texture recognition dataset and on a
BCI motor imagery task providing empirical evidences that dealing with infinite
set of features may enhance performances of learning algorithms. Finally, as the
algorithm has linear complexity and may be parallelized, we intend in future
works to test our approach on large-scale datasets.
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