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Abstract. Echo State Network (ESN) is a special type of recurrent neu-
ral network with fixed random recurrent part (reservoir) and a trainable
reservoir-to-output readout mapping (typically obtained by linear regres-
sion). In this work we utilise an ensemble of ESNs with diverse reservoirs
whose collective read-out is obtained through Negative Correlation Learn-
ing (NCL) of ensemble of Multi-Layer Perceptrons (MLP), where each
individual MPL realises the readout from a single ESN. Experimental re-
sults on three data sets confirm that, compared with both single ESN and
flat ensembles of ESNs, NCL based ESN ensembles achieve better gener-
alisation performance.

1 Introduction

It has been extensively shown that ensemble learning can offer a number of
advantages over a single learning machine (e.g. neural network) training. It has a
potential to e.g. improve generalisation and decrease the dependency on training
data [3]. One of the key elements for building ensemble models is the “diversity”
among individual ensemble members. Negative correlation learning (NCL) [5]
is an ensemble learning technique that encourages diversity among ensemble
members through their negative correlation. It has been successfully applied in a
number of applications, including regression problems [2], classification problems
[7], or time series prediction using simple auto-regressive models [5].

In this paper we apply the idea of NCL to the ensemble of Echo State Net-
works (ESNs). Each ESN operates with a different reservoir, possibly capturing
different features of the input stream. On each reservoir we build a non-linear
readout mapping. Crucially, the individual readouts of the ensemble are cou-
pled together by a diversity-enforcing term of the NCL training, which stabilises
the overall collective ensemble output. There have been studies of simple ESN
ensembles [9], or Multi-Layer Perceptron (MLP) readouts [1, 4], but to the best
of our knowledge, this is the first study employing a NCL style training in en-
sembles of state space models, such as ESNs.

The paper has the following organisation: Section 2 gives a background on
Echo State Network and Negative Correlation Learning. In Section 3 we intro-
duce negatively correlated ensembles of ESNs. Experimental studies are pre-
sented in Section 4. Finally, our work is concluded in Section 5.

2 Background

Echo state Network (ESN) [6] (shown in Fig.1 (right)) is a discrete-time
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recurrent neural network with K input units, N recurrent (reservoir) units and
L output units. The activation vectors of the input, internal, and output units
at time step t are denoted by s(t), x(t), and y(t), respectively. The connections
between the input units and the recurrent units are given by an N ×K weight
matrix V , connections between the internal units are collected in an N × N
weight matrix W .

The recurrent units are updated according to1:

x(t + 1) = f(V s(t + 1) + Wx(t)), (1)

where f is the reservoir activation function (tanh in this study). The readout is
computed as:

y(t + 1) = g(x(t + 1)), (2)

where g is the readout function and can either be linear (typical case for ESN),
or non-linear (e.g. a MLP). The readout mapping can be trained in an offline
or online mode by minimising the Mean Square Error, MSE = 〈(ŷ(t)− y(t))2〉,
where ŷ(t) is the readout output, y(t) is the desired output (target), and 〈·〉
denotes the empirical mean.

Elements of W and V are fixed prior to training with random values drawn
from a uniform distribution over a (typically) symmetric interval. The reservoir
connection matrix W is typically scaled as W ← αW/|λmax|, where |λmax| is
the spectral radius of W and 0 < α < 1 is a scaling parameter [6].
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Fig. 1: Ensemble of ESN with MLP readouts (left) and a single ESN (right).
The single ESN has linear readout with weight matrix U (reservoir activation
vector is extended with a fixed element accounting for the bias term).

Negative Correlation Learning (NCL) has been successfully applied to
training MLP ensembles [2, 3, 5, 7]. In NCL, all the individual networks are

1There are no feedback connections from the output to the reservoir and no direct connec-
tions from the input to the output.

54

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.



trained simultaneously and interactively through the correlation penalty terms
in their error functions. The procedure has the following form: Given a set of M
networks and a training input x(t), the ensemble output F (x((t)) is calculated
as a flat average over all ensemble members Fi(x(t)),

F (x((t)) =
1

M

M∑

i=1

(Fi(x(t))). (3)

In NCL the penalised error functional to be minimised reads:

E =
1

2
(Fi(x(t))− y(x(t)))2 + λpi(x(t)), (4)

where

pi(x(t)) = (Fi(x(t))− F (x(t)))
∑

i6=j

(Fj(x(t))− F (x(t))), (5)

and λ > 0 is an adjustable strength parameter for the negative correlation
enforcing penalty term pi. It can be shown that

E =
1

2
(Fi(x(t))− y(x(t)))2 − λ(Fi(x(t))− F (x(t)))2. (6)

Note that when λ = 0, we obtain a standard de-coupled training of indi-
vidual ensemble members. Standard gradient-based approaches can be used to
minimise E by updating the parameters of each individual ensemble member.

3 Negatively Correlated Ensemble of ESNs

To apply NCL to ensembles of ESN, we replace the linear readout (of stan-
dard ESN) with non-linear Multi-Layer Perceptron (MLP)2. The training of
negatively correlated ensemble of M ESNs consists of first, driving the indi-
vidual ESN reservoirs with the input stream and collecting the reservoir states
xi(t) = (xi

1
(t)......xi

N (t)), where xi(t) is the reservoir activation vector of the i-th
ESN, i = 1, 2, ...,M , at time t. Each ESN i has N reservoir units with reservoir
weight matrix W i and input matrix V i.

We then use the reservoir states xi(t) as an input for the MLP readouts Fi

(see figure 1 (left)). The readout MLPs had a single hidden layer of logistic
sigmoid units (the hidden layer size was determined through cross-validation)
and were trained using Negative Correlation learning described above.

We remark that in contrast to standard NCL, in ensemble of ESNs, the
maps Fi each receive a different input xi(t) that provide diverse representations
of the common input stream ...s(t− 1)s(t) observed up to time t. However, one
can treat the reservoir activations xi(t) as internal representations of the i-th
ensemble model receiving the common input s(t). From this point of view, all
the ensemble models receive the same input, as is the case in the standard NCL.

2To exploit the power of negative correlation the ensemble members should be non-linear
models. Negatively correlated linear mappings cannot implement the idea of globally correct
mappings by all ensemble members, while being locally diverse.
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4 Experimental Studies

We employ three timeseries used in the ESN literature covering a spectrum of
memory structure [8, 9, 10, 11]. For each data set, we denote the length of the
training, validation and test sequences by Ltrn, Lval and Ltst, respectively. The
first Lv values from training, validation and test sequences are used as the initial
washout period. In what follows we briefly introduce the data sets.

- 10th order NARMA system [8, 11]:

y(t + 1) = 0.3 y(t) + 0.05 y(t)
9∑

i=0

y(t− i) + 1.5 s(t− 9) s(t) + 0.1, (7)

where y(t) is the system output at time t, s(t) is the system input at time t
(an i.i.d stream of values generated uniformly from an interval [0, 0.5]). The
current output depends on both the input and the previous outputs. In general,
modelling this system is difficult, due to the non-linearity and possibly long
memory. The input s(t) and target data y(t) are shifted by -0.5 and scaled by
2 as in [8]. The networks were trained on system identification task to output
y(t) based on s(t), with Ltrn = 2000, Lval = 3000, Ltst = 3000 and Lv = 200.

- Chaotic Laser Dataset [8, 10]: The time series is a cross-cut through
periodic to chaotic intensity pulsations of a real laser. The task is to predict
the next laser activation y(t + 1), given the values up to time t; Ltrn = 2000,
Lval = 3000, Ltst = 3000 and Lv = 200.

- Sunspot series [8, 9]: The dataset3 contains 3100 sunspots numbers from
Jan 1749 to April 2007, where Ltrn = 1600, Lval = 500, Ltst = 1000 and
Lv = 100. The task was to predict the next value y(t + 1) based on the history
of y up to time t.

Experimental setup: The ensemble used in our experiments consists of
M = 10 ESNs with MLP readouts. In all experiments we use ESNs with reser-
voirs of N = 100 units. Hence, each individual MLP readout has 100 inputs.
We used NCL training of readouts via gradient descent on E with learning rate
η = 0.1. The output activation function of the MLP readout was linear for
NARMA task and sigmoid logistic for the laser and sunspot tasks.

We optimised the penalty factor λ and the readout complexity (number of
hidden nodes in Fi) using the validation set, λ was varied in the range [0, 1] (step
size 0.1) [3]. The number of hidden nodes was varied from 1 to 20 (step 1).

The single ESN model architecture described by hyperparameters such as
input weight scale, spectral radius and reservoir sparsity, was determined on
the validation set. Linear readout was trained via ridge regression [8, 12]. The
performance of this model was determined in 10 independent runs (e.g. 10
realisations of ESN based on the best performing hyperparameters).

For ensemble ESN (Ens-ESN-MLP), we used the 10 ESN reservoirs gener-
ated in the single ESN experiment as the ensemble members. Due to random

3obtained from National Geophysical Data Center (NGDC)
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initialisation of MLP readouts, we report the average performance (plus the min-
imum, maximum and standard deviation values) over 10 random initialisations
of MLPs.

Experimental Results: Table 1 summarises the results of the single ESN
model, Negatively Correlated ensemble of ESNs and independent ensemble of
ESNs (λ = 0) for the three time series considered in this paper. To assess the
improvement achieved by using a genuine NCL training vs. independent training
of ensemble members (λ = 0), the MLP readouts were initialised with the same
weight values in both cases. In all datasets, the ESN ensemble trained via NCL
outperformed the other models, with the most significant performance gain for
NARMA modelling task.

Note that the two ESN ensemble versions we study share the same number
of free parameters, with the sole exception of the single diversity-imposing pa-
rameter λ in NCL based learning. The single ESN has been used as a natural
baseline against which to compare the ensemble performance.

Dataset Test ESN Ens-ESN-MLP Ens-ESN-MLP
linear regression Indep. learning NCL

MSE 0.00102 0.000795 0.000297

NARMA STD 0.000101 0.0000142 0.0000237
Min 0.000865 0.000768 0.000270
Max 0.00118 0.000810 0.000349

MSE 0.000197 0.000187 0.000138

Laser STD 0.0000724 0.00000767 0.00000205
Min 0.0000998 0.000172 0.0000987
Max 0.000315 0.000197 0.000170

MSE 0.00163 0.00136 0.00115

Sunspots STD 0.000122 6.385E-06 1.054E-05
Min 0.00143 0.00136 0.00110
Max 0.00191 0.00138 0.00116

Table 1: Performance of the single ESN model and the ESN ensemble models.

5 Conclusions

We have empirically demonstrated that coupling ESN models through negatively
correlated non-linear readouts can lead to performance improvements over the
simple ESN ensemble. In contrast to traditional negatively correlated ensembles,
the readouts receive different inputs. However, when considering our model as
ensemble of ESNs, each receiving the same input stream, the reservoir activations
represent internal feature representations of the inputs and the model can be
viewed as a novel generalisation of NCL to state space models.
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