
Statistical properties of the ‘Hopfield estimator’
of dynamical systems

Miguel Atencia1 and Gonzalo Joya2 ∗

1- University of Málaga - Dept of Applied Mathematics
Campus de Teatinos, 29071-Málaga - Spain

matencia@uma.es

2- University of Málaga - Dept of Electronics Technology
gjoya@uma.es

Abstract. This paper analyses the statistical properties of a method for
estimating the parameters of systems defined by ordinary differential equa-
tions. Previously, this estimator was defined as an adapted version of Hop-
field neural networks, and its convergence and robustness with respect to
signal disturbances were proved, even when parameters are time-varying.
This contribution aims at analysing the estimation error by performing a
set of simulations where a random noise with known probability distribu-
tion is added to signals. It is shown that, asymptotically, the estimator
is unbiased and its variance vanishes. Further theoretical work is being
undertaken in order to rigourously support these empirical findings.

1 Introduction

System identification [1] can be defined as the characterization of a dynamical
system, by observing its measurable behaviour. Identification has been studied
from a variety of viewpoints, such as statistical regression, signal processing,
and adaptive control. In this work we deal with systems defined by Ordinary
Differential Equations (ODEs), although the method proposed is amenable to
be extended to more general models, such as Stochastic Differential Equations
and Delay Differential Equations. Regardless of the way a model is obtained,
either from the intuition of experts or from the application of physical laws,
it usually contains some parameters whose numerical value is uncertain and,
possibly, time-varying. Classical methods for parameter estimation include least
squares techniques and gradient based methods [2], but these algorithms present
some limitations when dealing with time-varying parameters.

There exist two main approaches to the analysis of algorithms for parame-
ter estimation: deterministic and probabilistic. Since estimation algorithms are
usually described by a recurrent definition, they constitute dynamical systems
whose analytical properties contribute to assess the estimation performance. In
particular, a desirable property is the convergence of the estimations towards the
actual values of the parameters or, at least, towards a bounded region around
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No. D/023835/09 by the Agencia Española de Cooperación Internacional para el Desarrollo.
The useful suggestions of the anonymous reviewers are gratefully acknowledged.

47

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.



these values, i.e. the asymptotic boundedness of the estimation error. A dif-
ferent, although related, view concerns the probabilistic properties of the esti-
mation when the system states are considered to be affected by random noise
modelled by a probability distribution. Then, the analysis aims at obtaining the
distribution of the estimation or, at least, its mean and variance. A satisfactory
practical performance is expected when an estimator is unbiased (its mean is
the actual value of the parameter) and efficient (its variance is minimal) or, at
least, if these favourable properties are attained asymptotically.

An estimation method has been proposed [3], based upon an adapted version
of continuous Hopfield networks [4] showing a remarkable ability to deal with
time-varying paraments. A rigourous theoretical analysis proved the asymptotic
boundedness of the estimation error. It was also proved [5] that the estima-
tion error remains bounded when the system states are affected by disturbances.
These results are briefly reviewed in Section 2. Despite convergence results
provide a valuable insight into the behaviour of the estimation algorithm, the
methods of proof are essentially nonconstructive, thus no hint is provided about
the size of the bounded region that the error converges to. Indeed, this bound
could have no practical significance, because the estimation error could be un-
acceptably high. Therefore, in this paper, we start a probabilistic analysis of
the estimator, aimed at establishing the practical performance of the estimator,
when signals are disturbed by noise with a known probability distribution.

The estimator is applied to a system of ODEs, which was proposed as a
model of HIV epidemics in Cuba [6]. Simulated data are obtained by numerically
integrating the system and perturbing the system states with gaussian noise of
known variance. This experimental setting is repeatedly performed in order to
obtain a statistically significant sample of the distribution of the estimations.
The analysis of this sample shows that the mean of the estimations converges
to the actual values of the parameters, even though the noise does not vanish.
This result, discussed in Section 3, suggests that the estimator is asymptotically
unbiased and efficient. This is only a first step in the probabilistic analysis of
the estimator, so we have pointed out future directions of research in Section 4.

2 A ‘neural’ method for parametric identification

In this section we define a method for parameter estimation and state some of
its dynamical properties. To this end, consider a model defined by a system of
ODEs, which we assume to be in the Linear In the Parameters (LIP) form:

dx(t)

d t
= A (x(t)) θ (t) + b (x(t)) (1)

where θ is a vector of parameters. The notation can be simplified by defining the

vector y =
dx

d t
− b, so the system model is described by the equation y = Aθ.

Most estimation techniques proceed by determining estimations θ̂ that minimize
the prediction error e = y−Aθ̂ = Aθ̃, where θ̃ = θ− θ̂ is the estimation error.
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Thus, consider the optimization problem minθ̂ V where the target function V is
the squared norm of the prediction error:

V =
1

2
‖e‖2 =

1

2
e�e =

1

2

(
A θ̃

)� (
A θ̃

)
=

1

2
θ̃
�
A� A θ̃ (2)

An estimation method results from defining a particular optimization algo-
rithm to minimize the prediction error. The proposed method stems from the
optimization capability [7] of the Hopfield neural network [8, 4], which in the
Abe formulation [9] is defined by the following system of ODEs:

d ui

d t
=

∑
j

wi jsj − Ii ; si = tanh
ui

β
(3)

where si is the state of neuron i, wi j and Ii are the network weights and biases,
respectively, and β is a design variable than can be, in principle, fixed arbitrarily.
The procedure for the application of Hopfield networks to optimization consists
in matching the target function to the network Lyapunov function:

V (s) = −1

2

∑
i

∑
j

wij si sj +
∑
i

Ii si

so that the weights and biases are obtained. Then, the network is implemented
until it reaches a minimum of the target. The comparison of this Lyapunov
function and the target function from Equation (2), leads to the definition:
W = −A�A and I = −A�y. In this case, unlike the application of Hopfield
networks to combinatorial optimization problems [10], weights and biases are
time-varying, since they are computed from the states of the dynamical system.

The dynamical properties of the defined estimator have been theoretically
analysed. Under mild assumptions, it was proved that the estimations converges
towards a bounded region around the actual values of parameters, even when
parameters are time-varying [11] and the measurements y, A of the dynamical
model are perturbed by a bounded disturbance [5]. However, the analysis so far
is deterministic, so the size of such bounded region has not been related to the
magnitude of the signal disturbance. Thus, in the rest of this contribution we
aim at characterizing the statistical properties of the estimation with regard to
the probability distribution of the noise.

3 Experimental results

By way of benchmark, we apply the estimator to the identification of a system
of ODEs, which has been proposed as a model of HIV epidemics in Cuba [6]:

d x

d t
=(λ− k1)x+ λ′ (y + z)− k2

x(y + z)

x+ y + z

d y

d t
=k1 x− μ y

d z

d t
=− μ z + k2

x(y + z)

x+ y + z

(4)
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where x, y and z represent different infected populations; λ, λ′ and μ are parame-
ters assumed to be known; and, finally, k1 and k2 are parameters that must be es-
timated, since they provide an assessment of health policies. In order to test the
estimation in several situations, k1 is assumed to be time-varying, whereas k2 is
constant. The model is simulated from the initial value (x0, y0, z0) = (200, 0, 0),
and data points are recorded at discrete intervals Δt = 7

365.25 years. Then, the
computed populations are disturbed by noise with a normal distribution N (0, 2).
This setting is intended to mimic to some extent the real available data.

The population data obtained by the procedure above described, is supplied
to the proposed estimation method, which is in turn numerically integrated along
the same time period. Since only discrete data have been recorded, they are in-
terpolated in order to match the finer time step of the integrator. First of all,
the estimator was applied to a noiseless data set, resulting a perfect fit, with a

negligible Sum of Squared Errors (SSE) of SSE =
∑

t

(
θ̂ − θ

)2

< 10−15. In

this experiment, the design variable β, which appeared in Equation (3), was set
to 10−5. Once the performance of the estimator has been established in a deter-
ministic context, the estimator was simulated 100 times, by providing disturbed
signals. The obtained estimations were averaged along the 100 instances and
the results are shown in Figure 1. It is obvious that the average estimations
present a significant coincidence with the actual parameter values. Further, the
mean estimation error converges towards zero, which is an empirical support for
considering the proposed estimator as asymptotically unbiased. Also, the value
of the SSE, where the sum is carried over all the time instants, remains low.
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Fig. 1: Average estimation of parameters k1 and k2.

The satisfactory performance of the estimator is confirmed by the analysis
of the variance of the estimations, shown in Figure 2. It is now evident that
the probability distribution of the estimator converges towards a degenerate
distribution coincident with the parameter values, despite the fact that the noise
does not vanish. It is interesting to compare these findings with the known
theoretical results [12]. A fundamental result states that there is a lower limit,
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called the Cramér-Rao bound, to the values of the variance of any unbiased
estimator. Further, under some conditions on the correlation of the data samples,
it is proved that this minimal variance is proportional to 1√

n
, where n is the

number of data instances. Although theoretical research is needed in order to
prove these properties, these simulations provide preliminary evidence that the
estimator is asymptotically efficient, whereas data that stems for the model are
informative enough to help the estimation convergence. This theoretical context
also provides an interpretation for the fact that the variance of the estimation
of k2 is significantly larger than that of k1 or, equivalently, the convergence of
the former is much slower than the latter: the variance of the estimator depends
on the sensitivity of the system solution with respect to the parameter. It is
reasonable to expect that the dependance of the populations on the parameter
k2 is critical, due to the stronger influence of the nonlinear terms that multiply
k2 in the model given by Equation (4).
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Fig. 2: Variance of the estimation of parameters k1 and k2.

A final remark concerns the choice of the design variable β that appears in
the definition of the estimator, Equation (3). The initial set of experiments was
attempted with the same value that performed satisfactorily with noiseless data,
namely β = 10−5. However, numerical instabilities appeared, so that either the
estimations converged towards erroneous values or they did not converge at all.
Then, the value of β was progressively increased until β = 0.1, when satisfactory
results were attained.

4 Conclusions and future directions

We have reviewed the statistical properties of an algorithm based upon the
optimization capability of Hopfield networks, previously proposed for parameter
estimation of dynamical systems. Empirical results suggest that the mean of the
estimations converges to the actual values of parameters, whereas the variance
converges to zero, i.e. the estimator is asymptotically unbiased and efficient.
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The present work is currently being expanded in four directions. Firstly,
comparisons are being carried out to assess the proposed estimator with regard
to classical techniques, such as least squares. Preliminary results show that the
‘Hopfield estimator’ provides lower error, faster convergence and less computa-
tional cost. Secondly, the analytical expression of the variance is being devel-
oped, in order to compare its value to that of the theoretical minimum given
by the Cramér-Rao bound. Besides, the experiments are being reproduced with
a variety of systems and noise levels with the aim to confirm that the findings
of this paper can be extended with wider generality. Finally, we are exploring
the optimal choice of the design variable β, which seems to play the role of a
regularization parameter. Also, different values of β for the estimators of the
different parameters k1, k2, could be defined in accordance to the diverse sensi-
tivities of the model states. This rationale could lead to a global enhancement
of the estimation results.
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