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Abstract. Least-Squares Support Vector Machines (LS-SVMs) have
been successfully applied in many classification and regression tasks. Their
main drawback is the lack of sparseness of the final models. Thus, a
procedure to sparsify LS-SVMs is a frequent desideratum. In this paper,
we adapt to the LS-SVM case a recent work for sparsifying classical SVM
classifiers, which is based on an iterative approximation to the L0-norm.
Experiments on real-world classification and regression datasets illustrate
that this adaptation achieves very sparse models, without significant loss
of accuracy compared to standard LS-SVMs or SVMs.

1 Introduction

LS-SVMs were introduced in [1] as a simplification of SVMs with several ad-
vantages: 1) the dual formulations for classification and regression are identical
(after a transformation of variables), 2) this common formulation can be rewrit-
ten as a linear system of equations, 3) the subsequent models show a similar
performance to the SVM ones in real-world problems.

The most serious drawback of LS-SVM models is the lack of sparseness, as
nearly all patterns become support vectors (SVs). For this reason, there are
numerous works addressing the sparseness of LS-SVM models, mostly based on
two categories: 1) pruning after training and then retraining, and 2) enforcing
sparseness from the beginning.

The first category started with [2], where the patterns with smallest |αi|
are eliminated. We retrain and repeat the procedure until the performance
degrades too much. Later, [3] suggested to eliminate those closest to the decision
boundary. A problem in both works is that it is not guaranteed that the number
of SVs will be greatly reduced.

∗J. López is a doctoral researcher kindly supported by the FPU grant AP2007-00142. K.
De Brabanter is a doctoral researcher at K.U. Leuven. J.A.K. Suykens is a professor at K.U.
Leuven. J.R. Dorronsoro is a professor at UAM. Research supported by Spain’s TIN2010-
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If, instead of solving the dual as a KKT system, we use the Sequential Min-
imal Optimization (SMO) algorithm [4], a pruning scheme is described in [5],
but it only covers the case of LS-SVMs with no bias terms. In the extreme case,
we can prune just one pattern per iteration, like in [6], but it suffers from the
high cost of matrix inversions.

Switching to the second category, we can fix in advance the number of SVs of
the final model [7]. Its main problem is the loss of performance when the number
selected is too small. A somewhat similar method is the one in [8], where a set of
linearly independent patterns is sought to reduce the size of the kernel matrix.
However, some datasets are reported for which almost no reduction is possible.

The L0-norm has been receiving increasing attention in the Machine Learning
community. It counts the number of non-zero elements of a vector. Therefore,
minimizing it leads to very sparse models. Unfortunately, this cannot be directly
done, since the resulting problem is NP-hard, so some approximations to it are
discussed in [9].

An iterative scheme that converges to the L0-norm is described in [10], used
for achieving sparseness in SVM classifiers. In this paper, we will adapt this
scheme to the LS-SVM case, not only for classification but also for regression.
Another difference is that we do not try to sparsify the bias term, since that is
not always convenient.

The rest of the paper is organized as follows. Section 2 describes the LS-SVM
primal and dual formulations. Next, the sparsifying procedure is explained in
Section 3. Its performance is reported in Section 4 for four real datasets. Finally,
Section 5 gives a brief discussion and pointers to further work.

2 Least Squares Support Vector Machines

Given a sample of N patterns {Xi, yi}, i = 1, . . . , N , where Xi ∈ R
m and yi ∈

{+1,−1} for classification and yi ∈ R for regression, the LS-SVM primal problem
is formulated as follows:

min
W,b,ξ

1

2
‖W‖2 + C

2

∑

i ξ
2
i

s.t. W · Φ(Xi) + b = yi − ξi, ∀i, (1)

where · denotes the vector inner product (dot product), and Φ(Xi) is the image
of pattern Xi in the feature space with feature map Φ(·). Using coefficients αi

for the Lagrangian L, we get

∂L/∂W = 0 ⇒ W =
∑

i

αiΦ(Xi), ∂L/∂b = 0 ⇒
∑

i

αi = 0,

∂L/∂ξi = 0 ⇒ αi = Cξi, ∂L/∂αi = 0 ⇒ W · Φ(Xi) + b = yi − ξi ∀i.

Condition αi = Cξi is the reason why LS-SVMs are not sparse: whenever
ξi 6= 0 we have αi 6= 0, so the point Xi will have an influence in the W vector.
The only way for ξi to be 0 is that W · Φ(Xi) + b = yi, which is very unlikely.
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Combining ∂L/∂W = 0, ∂L/∂ξi = 0 and ∂L/∂αi = 0 we get yi(
∑

j αjKij +
b) = yi − αi/C ∀i, where Kij = k(Xi, Xj) = Φ(Xi) · Φ(Xj), with k a Mercer
kernel function. This, together with ∂L/∂b = 0, form the system:

[

0 1T

1 K̃

] [

b
α

]

=

[

0
y

]

, (2)

with K̃ the modified kernel matrix with elements K̃ij = Kij + δij/C, 1T a row
vector of N ones, and y = (y1, . . . , yN )T . Thus, the LS-SVM model can be found
by solving this linear system of equations.

3 Sparsifying procedure

For the description of the procedure we follow the lines of [10]. As a starting
point, let us consider the following primal problem:

min
α,b,ξ

1

2

∑

i λiα
2
i +

C
2

∑

i ξ
2
i

s.t.
∑

j αjKij + b = yi − ξi, ∀i. (3)

Comparing (3) to (1), notice that now we do not have an explicit W vector,
but it still underlies under an implicit feature map W =

∑

j αjΦ(Xj). The

regularization term now is not on ‖W‖2, but on the ‖α‖2 vector, via the pre-
fixed λi coefficients. Introducing coefficients β for the Lagrangian L, one obtains:

∂L/∂αi = 0 ⇒ αi =
∑

j

βjKij/λi, ∂L/∂b = 0 ⇒
∑

i

βi = 0,

∂L/∂ξi = 0 ⇒ βi = Cξi, ∂L/∂βi = 0 ⇒
∑

j

αjKij + b = yi − ξi ∀i.

As in the previous section, combining ∂L/∂αi = 0, ∂L/∂ξi = 0 and ∂L/∂βi =
0 yields

∑

j Kij(
∑

m βmKjm)/λj + b = yi − βi/C ⇒
∑

m βmHim + b = yi, with

H = K diag(λ)−1K + IN/C and K the kernel matrix. This, together with
∂L/∂b = 0, form the system

[

0 1T

1 H

] [

b
β

]

=

[

0
y

]

, (4)

which is identical to (2) after we switch from K̃ to H, and from α to β.
At this point, the procedure consists of solving iteratively system (4) for

different values of λ. Given the t-th iteration, we will have vector λt. From it
we can build matrix Ht = K diag(λt)−1K + IN/C and solve the system, which
will give us the solution βt and bt. From this solution we get λt+1 and a new
iteration starts. This is summarised in Algorithm 1 (ISLS-SVM).

It can also be shown that, as t→∞, αt converges to a stationary point α∗.
Moreover, this model is guaranteed to be sparse, since the term (αt)T diag(λ)αt

in (3) converges to the L0-norm of α∗ [10]. Since this α∗ depends on the initial

191

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.



choice of weights, we set them to the LS-SVM solution, so as to avoid ending up
in different local minima solutions.

Algorithm 1 Iterative Sparse LS-SVM (ISLS-SVM)

Solve system (2) to give α and b.
λi ← αi, i = 1, . . . , N .
repeat

H ← K diag(λ)−1K + IN/C.
Solve system (4) to give β and b.
α← diag(λ)−1Kβ.
λi ← 1/α2

i , i = 1, . . . , N .
until convergence
return model (α, b).

4 Experiments

To illustrate the sparsifying ability of ISLS-SVM, we run experiments on 2 clas-
sification (Ripley [11] and Fourclass [12]) and 2 regression (Motorcycle [13] and
Fossil [14]) datasets. In these datasets the input space is R2. We compare LS-
SVMs against ISLS-SVMs and SVMs over the datasets mentioned. The RBF
kernel Kij = exp(−‖Xi −Xj‖

2/σ2) is used for all experiments.

Dataset N
LS–SVM ISLS–SVM SVM

Test error SVs Test error SVs Test error SVs

Ripley 250 12.8 167.0 13.4 13.0 11.6 61.8
Fourclass 862 0.0 575.0 0.0 54.4 0.0 232.2
Motorcycle 133 503.1 89.0 533.1 8.4 604.7 73.2

Fossil 106 7.5e-10 71.0 8.1e-10 6.2 4.2e-09 48.9

Table 1: Number of patterns and averages of the error rates and SVs in both
methods. Errors are given in % of misclassification for classification, and in MSE
for regression.

The comparison is performed on an out-of-sample test set consisting of 1/3
of the data. The first 2/3 of the randomized data are reserved for training
and/or cross-validation (CV). For a fair comparison, we need to properly tune
the hyperparameters of the different machines. For (IS)LS-SVMs, we use the
routine tunelssvm from the LS-SVMlab Matlab toolbox [15]. For SVMs, we use
the LIBSVM [12] software. The number of folds in CV is set to 10. We use 5
multiple starters for the CSA algorithm, and 10 randomizations. Convergence
of Algorithm 1 is assumed when the difference ‖αt−αt+1‖/N is lower than 10−4

or when the number of iterations t exceeds 50.
For each method, the average errors on the test data and number of SVs

are reported in Table 1. It can be seen that the performances of ISLS-SVM are
comparable to the ones for LS-SVM. This is remarkable, since the sparse model
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Fig. 1: Examples of sparse models (decision surfaces in classification and red
lines in regression) obtained by ISLS-SVM.

will not only be much faster in testing (about 10 times faster, considering the
SVs), but also will have good generalization abilities. This can be confirmed
looking at the results for SVMs, which generalize a bit better for classification,
but not for regression. Regarding sparsity, SVMs are sparser than LS-SVMs,
but not as sparse as ISLS-SVMs.

Next, we plot in Figure 1 some examples of the obtained ISLS-SVM models,
this time over the whole training data. SVs are highlighted with bigger and
differently coloured markers. A pattern Xi is considered to be a SV if, after
convergence, we get |αi| > 10−6. Notice that the resulting models suit pretty
well the data distributions.

5 Discussion

In this work we applied the technique in [10] to sparsify LS-SVMs. This is
of great interest, since LS-SVMs suffer from lack of sparseness. Another ad-
vantage is that LS-SVMs are formulated in the same way for classification and
regression, so the sparsifying procedure is the same for both cases. Results on 2
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classification and 2 regression datasets illustrate that the resulting models have
a generalization ability comparable to the ones of standard LS-SVMs and SVMs.

However, this procedure is computationally expensive, since each iteration
requires solving a system with complexity O(N3). The number of iterations is
usually quite low (around 15 or 20), but this number of iterations is precisely the
factor of extra cost compared to standard LS-SVM training. Thus, further work
is needed to accelerate its execution and make it applicable to larger datasets.
To this aim, one option may be using the SMO algorithm to solve the associated
dual formulations instead of the systems of equations [4].
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