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Abstract. The study of G protein-coupled receptors (GPCRs) is of great
interest in pharmaceutical research, but only a few of their 3D structures
are known at present. On the contrary, their amino acid sequences are
known and accessible. Sequence analysis can provide new insight on GPCR
function. Here, we use a kernel-based statistical machine learning model
for the visual exploration of GPCR functional groups from their sequences.
This is based on the rich information provided by the model regarding the
probability of each sequence belonging to a certain receptor group.

1 Introduction

The study of G protein-coupled receptors (GPCRs) is of great interest in phar-
maceutical research. These receptors regulate the function of most cells in living
organisms and it is estimated that they are targets for about one third of clini-
cally used drugs.

The function of the proteins depends directly on their 3D structure, which
is embodied in their amino acid sequence. GPCRs are membrane proteins, and
this environment makes their 3D structure difficult to unravel through nuclear
magnetic resonance or X-ray crystallography. Modern molecular biology meth-
ods, though, make their sequences easy to acquire. The grouping of GPCRs into
classes and subclasses based on sequence analysis may significantly contribute
to helping drug design and to a better understanding of the molecular processes
involved in receptor signaling both in normal and pathological conditions [1].

In order to group GPCR sequences, we need a measure of similarity between
them. A GPCR-specific kernel was recently defined in [2] to this purpose, as
part of a kernel-based statistical machine learning model of the manifold learn-
ing family, namely the Kernel Generative Topographic Mapping (KGTM). This
model describes multivariate data in terms of low dimensional representations, so
as to achieve the visualization of high dimensional data that would otherwise be
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difficult to visualize. The visualization of the high-dimensional GPCR sequences
would considerably help understanding their global grouping structure.

Recent research [2] using KGTM provided preliminary results of the existence
of this structure, including GPCR subclass-specific groups and some level of
subclass mixing. Here, we use the probabilistic properties of KGTM to explore
these subclasses in more detail. For that we resort to the explicit calculation
of the probability of each of the available sequences belonging to each of the
model groupings. This provides us with a map of probability that can qualify
the differences between sequences of either clear or dubious subclass ascription.

2 Kernel GTM

The GTM is a nonlinear statistical machine learning model of the manifold
learning family. It performs simultaneous clustering (as a constrained mixture
of distributions model) and low-dimensional visualization of multivariate data.
It is defined as a nonlinear mapping from a latent space in �� (with � being
usually 1 or 2 for visualization purposes) onto a manifold embedded in the data
�D space. This is expressed as a generalized regression function: y = Wφ (u),
where y ∈ �D, u ∈ ��, W is an adaptive matrix of weights, and φ is a vector
with the images of S basis functions φs. The prior distribution of u in latent
space is constrained to form a uniform discrete grid of M centres, in the form
of a sum of delta functions p(u) = 1

M

∑M
m=1 δu − um. Each component m in

the mixture defines the probability of an observable data point x given a latent
point um and the model parameters:

p (x|um,Θ) =
(
β

2π

)D/2

exp
{
−β

2
‖x− ym‖2

}
(1)

where ym = Wφ (um) and the adaptive parameters Θ are W and the common
inverse variance β. With these probabilities, a density model in data space can
be generated for each component m of the mixture, leading to the definition
of a complete model likelihood. The adaptive parameters of the model can be
optimized by Maximum Likelihood (ML) using the Expectation-Maximization
(EM) algorithm. Details can be found in [3].

Kernelization is a method originally defined for Support Vector Machines
(SVM). In recent years it has been extended to other models, including those
functionally similar to GTM [4]. The idea is that a method formulated in terms
of kernels can use the one that best suits the problem and data type at hand.
GTM was originally defined for quantitative data in the real domain. The type
of data analyzed in this study though, which could be considered as a text-like
sequence of symbols, should benefit from a kernel formulation of the model.

Observed data X can be implicitly mapped into a high-dimensional feature
space H via a nonlinear function: x → ψ (x). A similarity measure can then be
defined from the dot product in space H as follows:

K (x,x′) = 〈ψ (x) , ψ (x′)〉 (2)
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K is a kernel function that should satisfy Mercer’s condition [5]. Data are
expressed in the high-dimensional dot product spaceH , usually known as feature
space. This use of the feature space reduces the computational cost by employing
the kernel function K instead of directly computing the dot product in H .

The kernelization of GTM entails the redefinition of Eq.1 in feature space as:

p (ψ (x) |um,Θ) =
(
β

2π

)D/2

exp
{
−β

2
‖ψ (x) − ym‖2

}
(3)

Note that the prototypes ym are now defined in the feature space and not in
data space, as originally. The expression ‖ψ (x) − ym‖2 can be reformulated in
terms of kernel functions by expanding the prototypes on the data in feature
space. That is ‖ψ (x) − ym‖2 = Knn + (Λφm)T KΛφm − 2knΛφm, where K
is a kernel matrix with elements Knn′ = 〈ψ (xn) ,ψ (xn′)〉, and row vectors kn.
The adaptive parameters of the model are now Λ (an adaptative weight matrix)
and β, which can again be optimized by ML using EM (see details in [2]). Here
we are specially interested in one of the results of the expectation step of EM,
namely the estimation of the posterior Rmn = p (um|ψ (xn) ,Λ, β) as:

Rmn =
p (ψ (xn) |um,Λ, β)∑M

m′=1 p (ψ (xn) |um′ ,Λ, β)
. (4)

Rmn measures the degree of responsibility (probability) of a point um in the
latent space for the generation of a ψ (xn) GPCR data subsequence. Each Rmn

is an element of a M ×N responsability matrix R.

3 Experiments

GPCRs are traditionally divided into five main classes (rhodopsin-like (class
A), secretin-like (B), glutamate-like (C), adhesion, and Frizzled/Taste2 ) and,
in turn, into a complex branched sub-structure. Seven subclasses of class C
are modeled and visualized in this paper using KGTM, namely 1: Metabotropic
glutamate, 2: Calcium sensing, 3: GABA-B, 4: Vomeronasal, 5: Pheromone, 6:
Odorant, 7: Taste. The dataset consists of 232 protein sequences obtained from
GPCRDB1. Each position in a sequence is called a residue, which in turn may
be one of 20 possible amino acids. Each amino acid has a standard one-letter
code, and a sequence is therefore represented by a combination of these letters.
The number of residues by sequence in the dataset is 253 (data dimensionality).

The kernel function designed to analyze such data with KGTM is a variation
on that in [2], based on the mutations and gaps between sequences:

K (x, x′) = exp

{
ν

π (x, x′)√
π (x, x) π (x′, x′)

}
(5)

where x and x′ are two sequences and ν is a prefixed parameter; π (·) is a
score function commonly used in bioinformatics and expressed as: π (x, x′) =

1GPCRDB web site: http://www.gpcr.org/7tm/

235

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.



∑
r s (xr, x

′
r) − γ, where xr and x′r are the r th residue in the sequences. The

value of s (xr , x
′
r) can be found in a mutation matrix [6] and γ is a gap penalty

(usually the number of gaps in sequences). A normalization factor, defined as
the geometric mean of the maximum scores for each of the sequences, is used in
5 instead of their sum, as used in [2]. The modified kernel function now has a
proper delimitation of its range.

The first visualization results with KGTM are shown in Fig.1. There is quite
clear separation between many of the GPCR subclasses, which are visualized in
the latent space using the mode-projection, defined as: mmode = argmax

m
Rmn.

Many subclasses occupy a rather differentiated area on the map, showing little
overlapping. A few of them, though, have overlapping representations. Both
cases could be the source of insight on the peculiarities of subclass structure.
Metabotropic glutamate (subclass 1), GABA-B (3), and Taste (7) are clearly
differentiated from the rest of subclasses, which show significant overlapping
between them.

1

6

5

3

7

4

2

Fig. 1: Data visualization on a 10 × 10 representation map using the mode-
projection as described in the text. Left) Pie charts represent latent points,
and their size is proportional to the ratio of sequences assigned to them. Each
portion of a chart corresponds to the percentage of sequences belonging to each
subclass, coded in shades of gray. Right) The same map without sequence ratio
size scaling, for better visualization. Labels as described in the text.

The mode-projection is an intuitive form of visualization that sacrifices detail
in favour of clarity. By using only the maximum of the responsibilities in R,
though, it disposes of much of the rich information that might be contained in
this matrix of probabilities.

There are different ways of visually representing this information. One of
them is the display of maps of probability Ri, for a given sequence i. Sequences
clearly ascribed to a subclass are likely to have their responsibilities concentrated
in only a few modes (latent points), whereas the probabilities of sequences with-
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out clear subclass ascription may be more evenly spread across the map. Due
to space limitations, representations of this level of detail are omitted here.

We may be also interested in the responsibilities of all sequences of a given
subclass at once. In this case, we would aim to assess if each subclass has its
responsibilities located in a well-defined area of the map or not. The cumulative
responsibility of the sequences that belong to a given subclass c is defined as
a vector CRc =

∑
{n∈c}(Rmn), for m = {1, . . . ,M}. Figure 2 provides the

visualization of the CRc for four subclasses, namely those with c = 1, 3, 5, 6.
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Fig. 2: CRc representation maps for 4 GPCR subclasses. Top row) left: subclass
1 (Metabotropic glutamate), the most populated, is well-defined on the top-right
corner of the map; right: subclass 3 (GABA-B), also isolated and unmixed in the
left hand-side of the map. Bottom row) left: subclass 5 (Pheromone), strongly
focused on the bottom right corner of the map, but partially overlapping with
right: subclass 6 (Odorant). The layout corresponds to that of Fig.1, although
with its viewpoint slightly displaced to the left, to provide some perspective.

This takes us to the possibility of displaying the cumulative responsibility
of all sequences in the database, defined as vector CR =

∑N
n=1(Rmn), for

m = {1, . . . ,M}. With this map of probability, the existence of CR peaks and
valleys can be explored. The latter are likely to define the boundaries between
subclasses. The global CR is displayed in Fig.3. Consistent with the subclass-
specific representations in Fig.2, several local maxima are shown to correspond
to each subclass, which could be an indication of heterogeneity within the sub-
classes. Some deep valleys of probability can be seen in the central parts of the
map, drawing clear boundaries between subclasses represented in the periphery
of the map and those around its center. Some amongst the latter are the ones
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with a higher level of mixing and would merit further investigation.
Our results are consistent with early classification studies using other tech-

niques such as Hidden Markov Models, thereby validating the present method-
ology. Importantly, the method herein presented reveals mixing between some
receptor subclasses, suggesting its possible applicability to the study of het-
erodimerization between receptors. This finding paves the way for new strate-
gies in drug discovery research. KGTM may help in the exploration of receptors
susceptible of heterodimerization and thus be useful in the quest of more potent
and safer drugs.
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Fig. 3: Visualization of the global CR (on the vertical axis) of the data set in
the representation map. Layout as in Fig.2.

References

[1] M. C. Cobanoglu, Y. Saygin and U. Sezerman, Classification of GPCRs using family
specific motifs. IEEE-ACM T. Comput. Bi., In press , 2010.

[2] I. Olier, A. Vellido and J. Giraldo, Kernel Generative Topographic Mapping. In M. Ver-
leysen, editor, proceedings of the 18th European symposiun on artificial neural networks
(ESANN 2010), 481-486.

[3] C. M. Bishop, M. Svensén, and C. K. I. Williams, GTM: The Generative Topographic
Mapping, Neural Comput., 10(1):215–234, Elsevier, 1998.

[4] N. Villa and F. Rossi, A comparison between dissimilarity SOM and kernel SOM for
clustering the vertices of a graph. In proceedings of the 6th workshop on self-organizing
maps (WSOM 07), Bielefield, Germany, 2007.

[5] B. Schölkopf and A. Smola. Learning with Kernels. The MIT Press, Cambridge, Mas-
sachussets, 2002.

[6] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge Univ. Press, 2004.

[7] Z. R. Yang and R. Thomson, A novel neural network method in mining molecular sequence
data, IEEE T. Neural Networ., 16:263–274, 2005.

238

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.




