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Abstract. Computational intelligence generally comprises a rather large
set of – in a wider sense – adaptive and human-like data analysis and
modelling methods. Due to some superior features – such as generalisa-
tion, trainability, coping with incomplete and inconsistent data, etc. –
computational intelligence has found its way into numerous applications
in almost all scientific disciplines. A very prominent field among them are
life sciences that are characterised by some unique requirements in terms
of data structure and analysis.

1 Introduction

Life sciences cover a large research field with challenging questions in domains
such as (bio-)chemistry, biology, environmental research, or medicine. Not only
recent technological developments allow the generation of large and very complex
data sets in these fields. Often such data is no longer manageable by humans.
Challenges are e.g. in the context of high-throughput processing to handle the
high frequency of incoming data and its high-dimensionality by means of a large
number of measured features. Also the structure of the measured data repre-
senting an object of interest is often challenging because the data may be very
heterogeneous – combining different measurement sources – or can be of high-
content type. Another specific challenge in life science supporting systems is the
interface to the domain expert. Only those experts can provide suitable validity
evaluation and gain semantic insight using the models built from the data.

Computational intelligence (CI) [1] methods have been successfully applied to
biological and biomedical problems for several years, refer to [2, 3] for some early
work as well as to [4, 5, 6]. Computational intelligence has a strong potential
to be used to pre-process, model, and analyse such data focused on specific
questions arising from the domain. Thus new strategies are needed to cope with
the complexity of life science applications. A very effective way is to employ
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Fig. 1: Large spectra sets are common in life science with more and more sam-
ple by e.g. new imaging technologies (plot a). The spectra are typically en-
coded in less, but often still high-dimensional feature sets (plot b). Finally
(dis-)similarities are frequently uses to represent the whole data set for cluster-
ing or classification models (plot c).

explicit or implicit domain expert knowledge about the data or the analysis
task. As such knowledge may be available in very different forms – by means of
appropriate (bio-)physical models, data specific distance measures, or analysis
specific data encoding techniques – the strategies of integration are different.
One can learn the parameters of a problem-specific model from available test
data. In other cases the knowledge is used in the design of adaptive analysis
algorithms to generate the desired meta-information out of the available data.

Examples where computational intelligence methods are used for data analy-
sis are e.g. the analysis of spectroscopic data (see Figure 1) with a large number
of measurements to reveal different types of biochemical information in a sam-
ple cohort; the automatic monitoring of cell cultures using microscopic images
of the cells [7]; enabling systems in cancer research combining information from
immune-histological images, gene-expression analysis, and clinical data, to men-
tion just a few.

In medical research novel high-throughput measurement methods have led to
an increasing amount of data providing potentially relevant information for the
identification of disease markers or to support the development of new medical
treatments and models. Additionally the results of different sample analyz-
ers and multiple sources of expert information like specialized databases and
ontology sources have to be integrated and are accessible. Computational in-
telligence methods play an important role and have been excessively utilized
[8, 9, 10, 11, 12, 13, 14].

Clinical researchers need efficient methods to handle these large amount of
data and effective tools to transfer this data into meta-data and information.
This includes methods to explore measured data by means of clustering under
different criteria, to evaluate data and models with respect to accuracy and
reliability and approaches to provide maximum interpretability of models. Based
on cognitive concepts, such as learning and prototypes, some machine learning
tools approach already these needs but the complexity of the data, by means
of varying data density, high dimensionality, and model reliability, are still very
challenging.

For example in pathology or biomedical applications the labeling of data ac-
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cording to different recognition tasks may already be challenging for the domain
experts in two different ways: the vast amount of data to be labeled and the
vagueness of the underlying concepts in biology. One concrete example, where
experts struggle in labeling the data, is the identification of tumor tissue in
immune-histological slice images of tumor probes. One possibility to handle this
problem is to first cluster the tissues on the slices in an unsupervised manner,
using tissue representations that – according to the domain expert – are relevant
like graininess or intensity of different immune-histological markers. The result
of this clustering can then be validated, annotated and corrected by the human
domain expert for further supervised analysis.

In plant biology the -omics (transcriptomics, proteomics, metabolomics) era
generated – along with typically huge data sets – the demand for complex and
particularly integrative data analysis [15]. Computational intelligence paradigms
in combination with state-of-the-art statistical methods have been extensively
utilised to cope with large-scale data that is often incomplete and/or incon-
sistent. Particularly their excellent way to incorporate non-explicitly avail-
able expert knowledge made computational intelligence often the method of
choice [16, 17, 18].

As a next step, the routine utilisation of functional genomics and genetical
approaches along with automated and completely controlled growth chambers
and greenhouses has led to an increasing demand for high-throughput phenotyp-
ing (phenomics). Not surprisingly, this is reflected in accordingly required data
analysis [19] and spatiotemporal modelling [20]. Here, the generalisation ability
of machine learning approaches has turned out to be an advantageous feature to
cope with inherent biological variation, both between individuals [21] and along
the time line of plant development [22].

Within the next years it is generally anticipated to find an increasing impor-
tance of

• data analysis on structured data with application specific semantics,

• non-standard metrics and dissimilarity measures to cope with application
specific data properties,

• unbalanced and sparsely represented data that reflects the typical data
structure in life sciences,

• approximation, visualization, and data reduction techniques to cope with
large scale problems,

• reliability improvement and confidence estimates for model interpretation.

All of these topics do not just lead to a nice playground for computational
intelligence paradigms. They can often only be addressed successfully by com-
putational intelligence. In this context the present paper reflects a number of
recent developments without claiming to provide a complete view.
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Fig. 2: Effect of different simple metric adaptations with respect to a cluster
center (prototype) w in a 2D space. Left standard euclidean-, middle weighted
euclidean-, right matrix-weighted euclidean distance. Details are given e.g. in
[26]. More advanced data and problem specific metric adaptations have been
found to be very effective in different computational intelligence approaches [28].

2 Development of novel methodologies

2.1 Non-standard metrics and dissimilarity measures

In general it is a promising approach to reflect characteristic data properties
in the utilised data processing pipeline. This typically leads to an increased
performance in tasks, such as clustering, classification, and non-linear regression,
that are commonly addressed by machine learning methods.

One possible way to achieve this is to adapt the used metric according to
the underlying data properties and application, respectively [23, 24, 25, 26], see
Figure 2.

Spectral data has moved into the focus of data analysis recently. Particularly
in case of prototype-based neural networks, that are essentially based on similar-
ity measures, a very interesting approach is to consider the individual spectral
signatures as densities, that are positive functions (patterns), not necessarily
normalised but finite measures [27]. In general, a pairwise directed distance D
between these densities is called a metric, if the following three conditions hold:

1. D(X‖W) ≥ 0 (positive definiteness),

2. D(X‖W) = D(W‖X) (symmetry),

3. D(X‖Z) ≤ D(X‖W) + D(W‖Z) (triangle inequality).

However, if only condition 1 is satisfied by a particular distance measure, it
is not a metric but it is referred to as a divergence. Assuming that spectra are
positive functions, which is typically the case, divergences could be applied as
similarity, or more precisely dissimilarity measures to compare different spectral
signatures. Common divergences are for example Kullback-Leibler, Hellinger, or
Jensen-Shannon.

The concept of divergences is on no account restricted to the Euclidean space.
A more general approach is to consider an abstract space where common diver-
gences, such as Kullback-Leibler-, Csiszár-Morimoto-, or Bregman-divergence
can be generalised towards Alpha-, Beta-, and Gamma-divergences. The funda-
mental properties of the underlying divergences remain present. Particularly the
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Gamma-divergence seems to be very robust in terms of outliers [29]. Moreover,
novel divergences offering tailored properties can be developed [30].

The properties of divergences are typically controlled by parameters. This
tuning can be done in an elegant way by integration of divergences as dissimi-
larity measures or cost functions into machine learning approaches. In return,
these machine learning approaches benefit from an extended choice of available
dissimilarity measures and cost functions. As mentioned before, prototype- and
vector-quantisation-based paradigms seem particularly suitable [28, 31].

In [32] a general method for the assessment of data attribute variability is
suggested. This method provides a mathematically thorough characterisation
of a certain attribute sensitivity using several general similarity measures. The
properties of this method are shown by means of multi-spectral image analysis
and segmentation.

The representation of biomedical objects is often composed from data com-
ing from different sources (e.g. spectra as well as clinical data and image based
information). For every type of data (data from one source) suitable simi-
larity measures are (or become) available and thus appropriate integration of
those measures into one similarity measure for the whole object representation
is needed. Approaches towards this integration are matter of ongoing research
(see e.g. [33] and [34]).

2.2 Efficient data processing for large scale problems

The novel data generation approaches applied in life sciences generate large
amounts of data which may still be sparse in the data space due to the common
high dimensionality of the measurements. Computational intelligence methods
are used in multiple ways to reduce the dimensionality of the data [35, 36, 37] to
summarize large data sets [16, 8] or to describe them in a more compact manner
[38], providing maximum information.

While the basics of these steps are well known some recent trends can be
identified leading to significantly improved models and approximation schemes.
Recently the concept of random projection [39], or the more advanced method
of compressed sensing [40], got significant attention [41, 42]. Employing the
Johnson-Lindenstrauss Lemma (see e.g. [42]) already a random projection of
the data to a lower (but not to low) data space preserves enough structure in the
data to keep most of the information accessible. More recent approaches, based
on additional mathematical results and proofs allow also the reconstruction of
the original signal based on a rather small number of projected measurements,
such that, theoretically already the recording of the data could be simplified.
These findings are going to be used in many computational intelligence methods
to simplify learning and data modelling tasks [42].

Another recent approach to simplify learning models in computational in-
telligence deals with relational data. This is very common also in life sciences,
e.g. if the similarity between proteins is given by scores where the original data
are not accessible or not available as regular feature vectors. Relational learning
methods (see e.g. [43]) employ (dis-)similarity matrices, which can get huge for
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Fig. 3: Schema of patch clustering. The data set (left) is to large to fit into
memory. Only a patch is processed and represented by a small cluster model
(right top). The cluster model is used subsequently together with multiplicities
(data statistics). The new patch and the former cluster model are reclustered
to obtain a refined model (right bottom). Details in [43].

high-throughput data like in sequencing experiments. There are at least two
approaches for large (dis-)similarity matrices, namely patch processing [43, 44]
(see Figure 3), processing the similarities in patches while approximating the
remaining data statistics in a smooth manner, and matrix approximation e.g.
by the Nystroem approximation [45]. Both approaches rely implicitly on the fact
that the information encoded in the data is still accessible also if a rather large
amount of data points is ignored or only summarized. A further approach to
approximate large data sets is accessible by the core-set theory [46] that becomes
also more and more prominent in computational intelligence for life science.

2.3 Making models more trustful

Computational intelligence methods in the life science are often used for the pre-
diction of some properties of a new item with respect to a model. To make such
models applicable under true life settings the confidence, reliability and inter-
pretability of the models gets most relevant. Many computational intelligence
approaches like prototype based models show good interpretation properties but
do not or only minor allow to estimate the confidence of a prediction or to judge
the reliability of the models by itself. Initial steps for corresponding extensions
have been suggested in [47, 48, 12, 49], see Figure 4. A further aspect is the
incorporation of additional knowledge to make the models more realistic and
therefore trustful as shown e.g. in [50] but also to combine different sources of
information to support the models in learning appropriate solutions, like in [33].

Visualization is another key topic towards the interpretability of models built
from the available data. Challenges in this field comprise: the handling of non-
linearity of dimension reductions for visualization, compression and exhaustive
evaluation on large data sets, and domain adequate interfaces for the human
expert. In [51] discriminative dimension reduction for labeled data is realised
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Fig. 4: Schema of conformal prediction [48]. The approach is suitable to judge
the confidence and credibility of predictions made by a classifier method.

using an adaptive local dissimilarity measure.

3 Conclusions

The existence of big project consortia, a large number of primary publications,
edited book volumes, and the second special session at ESANN within five years
on this topic clearly demonstrates the importance of computational intelligence
for life science applications. Although concrete applications on the one hand can
be found in an extremely wide range and are typically rather specific then again,
there are many challenging applications that share certain life science charac-
teristics. Currently these seem to be, besides and beyond sheer data set size
and the need of high-throughput processing, particular data properties such as
sparseness and non-standard (non-Euclidean, non-correlation, etc.) and mixed
data spaces. This is accompanied by properties that are also prominent out-
side the life sciences, such as spectrality and implicitly given expert knowledge.
All this together benefits from and virtually requires computational intelligence
based approaches.
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[34] Milton Garćıa-Borroto and José Ruiz-Shulcloper. Selecting prototypes in mixed incom-
plete data. In Alberto Sanfeliu and Manuel Cortes, editors, Progress in Pattern Recog-
nition, Image Analysis and Applications, volume 3773 of Lecture Notes in Computer
Science, pages 450–459. Springer Berlin, 2005.

[35] Luis F. Giraldo, Fernando Lozando, and Nicanor Quijano. Foraging theory for dimen-
sionality reduction of clustered data. Machine Learning, 82(1):71–90, 2011.

[36] Longcun Jin, Wanggen Wan, Yongliang Wu, Bin Cui, and Xiaoqing Yu. A general frame-
work for high-dimensional data reduction using unsupervised Bayesian model. Commu-
nications in Computer and Information Science, 98 CCIS(PART 2):96–101, 2010.

[37] Nir Ailon and Bernard Chazelle. Faster dimension reduction. Communications of the
ACM, 53(2):97–104, 2010.

[38] Martijn Dijkstra and Ritsert C. Jansen. Optimal analysis of complex protein mass spectra.
Proteomics, 9(15):3869–3876, 2009.

[39] Angshul Majumdar and Rabab K. Ward. Robust classifiers for data reduced via random
projections. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
40(5):1359–1371, 2010.

[40] David Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52:1289
– 1306, 2006.

[41] David Donoho. High-dimensional data analysis: The curses and blessings of dimen-
sionality, 2010. http://www-stat.stanford.edu/donoho/Lectures/AMS2000/Curses.pdf
(30.09.2010).

[42] Richard G. Baraniuk and Michael B. Wakin. Random projections of smooth manifolds.
Foundations of Computational Mathematics, 9(1):51–77, 2009.

[43] Barbara Hammer and Alexander Hasenfuss. Clustering very large dissimilarity data sets.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), 5998 LNAI:259–273, 2010.

[44] Zhu Xibin and Barbara Hammer. Patch affinity propagation. In Michel Verleysen, editor,
Proceedings of the 19. European Symposium on Artificial Neural Networks ESANN 2011,
page numbers to be obtained from ToC of this proceedings book, Evere, Belgium, 2011.
D-Side Publications.

[45] Mu Li, James T. Kwok, and Bao-Liang Lu. Making large-scale Nyström approxima-
tion possible. In Proceedings of the International Conference on Machine Learning
(ICML)’2010, 2009.

[46] Liang Chang, Xiao-Ming Deng, Sui-Wu Zheng, and Yong-Qing Wang. Scaling up ker-
nel grower clustering method for large data sets via core-sets. Acta Automatica Sinica,
34(3):376–382, 2008.

[47] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen,
and Klaus-Robert Müller. How to explain individual classification decisions. Journal of
Machine Learning Research, 11:1803–1831, 2010.

[48] Alex Gammerman and V. Vovk. Hedging predictions in machine learning. The Computer
Journal, 50(2):151–163, 2007.

[49] Bin Tong, ZhiGuang Qin, and Einoshin Suzuki. Topology preserving SOM with transduc-
tive confidence machine. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6332 LNAI:27–
41, 2010. Conference of 13th International Conference on Discovery Science, DS 2010;
Conference Date: 6 October 2010 through 8 October 2010.

[50] Volkan Vural, Glenn Fung, Balaji Krishnapuram, Jennifer G. Dy, and R. Bharat Rao.
Using local dependencies within batches to improve large margin classifiers. Journal of
Machine Learning Research, 10:183–206, 2009.

[51] Kerstin Bunte, Barbara Hammer, Axel Wismüller, and Michael Biehl. Adaptive local dis-
similarity measures for discriminative dimension reduction of labeled data. Neurocomput.,
73:1074–1092, March 2010.

86

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.




