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Abstract. Electroencephalographic Evoked Response Potentials (ERP)s
exhibit distinct and individualized spatial and temporal characteristics.
Identification of spatio-temporal features improves single-trial classifica-
tion performance and allows a better understanding of the underlying
physiology. This paper presents a method for analyzing the spatio-temporal
characteristics associated with Error related Potentials (ErrP)s. First, a
resampling procedure based on Global Field Power (GFP) extracts tem-
poral features. Second, a spatially weighted SVM (sw-SVM) is proposed
to learn a spatial filter optimizing the classification performance for each
temporal feature. Third, the so obtained ensemble of sw-SVM classifiers
are combined using a weighted combination of all sw-SVM outputs. Re-
sults indicate that inclusion of temporal features provides useful insight
regarding the spatio-temporal characteristics of error potentials.

1 Introduction

Many brain computer interfaces (BCI) make use of Electroencephalography
(EEG) signals to categorize two or more classes and associate them to sim-
ple computer commands. Classification of brain signals is not an easy task
because EEG records are high dimensional measurements corrupted by noise.
Interestingly, EEG signals often reveal various spatial and temporal characteris-
tics. Thus, it is important to characterize both spatial and temporal dynamics
of EEG data to provide reliable BCI control.

Usually spatial decomposition is performed to extract the Evoked Response
Potential (ERP) components, including Principal Component Analysis, Inde-
pendent Component Analysis, etc. These methods define the decomposition in
terms of statistical proprieties the components should satisfy in a specific time
window. However, ERPs reflect several temporal components, thus, spatial de-
composition should be performed for each interesting interval occurring in the
pre-fixed window. To this end, some algorithms have been proposed to study
where the discriminative information lies into the spatio-temporal plane. They
visualize a matrix of separability measures into the spatio-temporal plane of the
experimental conditions. The matrix is obtained by computing a separability
index for each pair of spatial electrode measurement and time sample. Several
measures of separability have been used, for instance the signed-r2-values [1],
Fisher score and Student’s t-statistic [5], or the area under the ROC curve [2].
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Separability matrix should be sought as to automatically determine intervals
with fairly constant spatial patterns and high separability values. This proves
difficult and heuristic techniques are often employed to approximate interval bor-
ders. In addition, the three first aforementioned measures rely on the assumption
that the class distributions are Gaussian, which is seldom verified.

To overcome all these drawbacks, we develop a spatio-temporal data driven
decomposition technique. A two-stage feature extraction technique is proposed.
First, a time feature extraction is performed based on Global Field Power (GFP)
[3], defined for each time sample as the sum of the square potential across elec-
trodes. Second, a spatially weighted SVM (sw-SVM) is proposed to learn for
each time interval a sparse spatial filter optimizing directly the classification
performance. Finally, the ensemble of sw-SVMs obtained on selected temporal
features are combined using a weighted average, to get a robust decision function.

The remainder of this paper is organized as follows. The proposed method
is introduced in Section 2. Section 3 accounts for data sets description and
discusses the experimental results. Finally, Section 4 holds our conclusions.

2 Method

2.1 Problem description

BCI applications with two classes of action provide a training set of labeled trials
from which a decision function is learned. The decision function should correctly
classify unlabeled trials. Let us consider an EEG post-stimulus trial recorded
over S electrodes in a short time period of T samples as a matrix X̃p ∈ R

S×T .

Hence, the entire available set of data can be denoted {(X̃1, y1), ..., (X̃p, yp), ...,

(X̃P , yP )} with yp ∈ {−1, 1} the class labels. Our task consists in finding the
spatio-temporal features that maximize discrimination between two classes.

2.2 Temporal features

To select temporal intervals in the ERP where discriminative peaks appear,
Global Field Power (GFP) [3] is computed on the difference of the grand averages
of the two class post-stimulus trials. Pronounced deflections with large peaks,
denoting big dissimilarities between the two activities, are associated with large
GFP values. Windows involving significant temporal features are chosen as
intervals where GFP is high relative to the background EEG activity.

To select significant windows we require a statistical threshold for the ob-
served GFP of the difference grand average trials in the two classes. Such
threshold is estimated with a resampling method as the 95th percentile (5%
type I error rate) of the appropriate empirical null distribution. For P and Q

observed single trials in classes labeled 1 and −1, respectively, we resample P

and Q trials with random onset from the entire EEG recording. We compute
the difference of the grand average of the P and Q random trials and retain the
maximum value of GFP. The procedure is repeated 1000 times and the sought
threshold is the 95th percentile of such max-GPF null distribution after 10%
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trimming. The trimming makes the estimated GFP more robust with respect to
outliers given by eye blinks and other large-amplitude artefacts. Taking the max-
GPF at each resampling ensures that the nominal type I error rate is preserved
regardless the number of windows that will be declared significant.

Noteworthily, contiguous samples with high GFP coincide with stable deflec-
tion configurations where spatial characteristics of the field remains unchanged
[3]. Since within each selected time window the spatial pattern is fairly constant,
average across time is calculated. Averaging over time rules out aberrant values,
reduces signal variability and attenuates noise. Besides, it reduces dramatically
time dimensionality to I where I is the number of significant time features.

2.3 Spatial features and classifier : sw-SVM

Temporal filtering provides us with Xp ∈ R
S×I trials. Each column vector

(xp)i ∈ R
S reflects a spatial characteristic at a temporal feature i ∈ {1, ..., I}.

Hereafter, xp will refer to (xp)i for convenience. Hence, I spatial filters are
learned over the different time components. In this work, spatial filtering is
learned jointly with a classifier in the theoretical framework of SVM. The pro-
posed sw-SVM method (spatially weighted SVM) has the advantage of learning
a spatial filter so as to improve separability of classes whilst reducing classifica-
tion errors. It involves spatial feature weights in the primal SVM optimization
problem and tunes these weights as hyper-parameters of SVM. We denote by
d ∈ R

S the spatial filter and D a matrix with d on the diagonal. Matrix D is
learned by solving the sw-SVM optimization problem:

min
w,b,ξ,D

1

2
‖w‖

2
+ C

P
∑

p=1

ξp

subject to yp(〈w,Dxp〉+ b) ≥ 1− ξp and ξp ≥ 0 ∀p ∈ {1, . . . , P}

and

S
∑

s=1

D2

s,s = 1 ∀s ∈ {1, . . . , S} (1)

where w ∈ R
d×1 is the normal vector, b ∈ R is an offset, ξp are slack variables

that ensure a solution in case data are not linearly-separable, and C is the
regularization parameter that controls the trade-off between a low training error
and a large margin. The objective function is not convex with respect to all
parameters jointly. Hence, we proceed by alternating the search for a solution of
(1). For D fixed, the problem is reduced to a ℓ1 soft margin SVM with the only
difference being that xp is replaced by Dxp in the inequality constraint. Primal
and dual objective functions of such a problem are convex, and their solution
is obtained by any of the available SVM algorithms. Let J(D) be the optimal
value of this problem. Optimization problem of the dual formulation is:

J(D) =















maxα 1Tα− 1

2
αTY TXTDTDXY α

subject to yTα = 0
and 0 ≤ αp ≤ C ∀p ∈ {1, . . . , P},
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where α is the vector of Lagrangian multipliers, X = {x1, ...,xn}, yT =
{y1, ..., yn} and Y = Diag(y). The value J(D) is thus obtained for a given
α by solving the following :

min
D

J(D) subject to

S
∑

s=1

D2

s,s = 1. (2)

By setting D̃ = D
T
D, problem (2) reduces to a minimization problem under

ℓ1 constraints over D̃. This is clearly an instance of the Multiple Kernel Learn-
ing (MKL) problem proposed in [6] where one homogeneous degree 1 polynomial
kernel is used over electrode s samples and D2

s,s is its corresponding positive mix-

ing coefficient. Authors of [6] prove that the search for the optimal D̃ is convex,
yielding fast convergence toward the optimal conditional solution. Hence, the
optimization problem can be solved efficiently using a gradient descent as in
SimpleMKL [6]. For effect of the ℓ1 constraints, the sought spatial filters will be
sparse. Linear sw-SVM can be extended to a non-linear sw-SVM by replacing
inner products with a suitable kernel.

2.4 Ensemble of sw-SVM classifiers

As seen above, a way to reduce EEG variability is to perform signal averaging
across time. Another way to reduce this influence, from a classification point of
view, is to use an ensemble of classifiers [7]. According to this strategy, a multiple
sw-SVM system is designed for each temporal feature. A weighted average on sw-
SVM outputs is used to determine a set of significant classifiers. Weights are set
as the product of two functions growing proportionally with the accuracies of the
two classes (evaluated on a validation set). This weighting strategy is ideal for
unbalanced data sets since it seeks classifiers that jointly present good accuracies
in both classes. Spatio-temporal features with highest discriminant power are
associated with high weights and constitute good candidates for classification.

3 Experimental results

3.1 ErrP data set

The proposed method was evaluated on a visual feedback ErrP [4] experiment.
Eight BCI-naif healthy subjects performed the experiment. They had to retain
the position of a sequence of digits and to localize where a target digit previously
appeared. A visual feedback indicates whether the answer was correct (green
feedback) or not (red). Number of digits composing the sequences was adapted
with an algorithm tuned to allow around 20% errors for all subjects. Experiment
involved 2 sessions that lasted together approximately half an hour. Each session
consisted of 6 blocks of 6 trials, for a total of 72 trials. Recordings of EEG were
made from 31 electrodes. Raw EEG potentials were re-referenced to the common
average and filtered using a 1− 10Hz 4th order butterworth filter. A window of
1000ms posterior to the stimulus has been explored for each trial. No artifact
rejection was applied and all trials were kept for analysis.
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Fig. 1: Top : GFP computed on the difference of the grand average error-
minus-correct 1s trials and selected intervals. Middle : the difference computed
on electrode FCz and topographies associated with the average in the selected
intervals. Bottom : accuracies for error (blue bar) and correct (green bar) classes
and sw-SVM associated weights (red bar, normalized between 0 and 1).

3.2 Results

Single trial classification of error-related potentials is assessed using a 5-Cross
Validation technique. Time windows are selected according to GFP computed
on training sets. For each temporal feature, an non-linear sw-SVM with 2 de-
gree polynomial kernel is learned with a set of values of C. The so obtained
spatial and temporal filters are applied to validation sets, then performances are
assessed and averaged. Figure 1 shows the average of the difference error-minus-
correct for channel FCz of subject 7. It also reports GFP computed on the
difference average. Five components are to be noted. A negative deflection can
be seen around 240ms after the feedback and a second positive component occurs
about 350ms. Three more peaks are also detected; a negative deflection around
500ms, a less pronounced negative deflection around 700ms and a small positive
deflection around 800ms. Scalp potentials topographies associated with the 5
extracted temporal features are also shown on Figure 1. The 1st negative peak
seems to be occipital whereas the 2nd positive peak covers a rather fronto-central
area. The 3rd peak covers a parieto-central area, the 4th peak covers the whole
right hemisphere and the last one is more central. Figure 1 shows accuracies
for error and correct classes for each sw-SVM and their corresponding weights
(normalized between 0 and 1). Only sw-SVMs learned on the most pronounced
peaks (2nd and 3rd) show good accuracies in both classes and are thus retained.

Figure 2 shows the 5 Cross-Validation performance provided by a classical
SVM approach where all electrodes are used, the sw-SVM where only one spa-
tial filter was used on the whole trial duration and the proposed method where
spatio-temporal features were extracted. The proposed method proved con-
stantly superior to SVM and sw-SVM. A paired Wilcoxon signed-rank test was
evaluated to compare the proposed method to SVM and sw-SVM and p-values
of 0.0078 and 0.0391 were obtained. Inclusion of temporal features along with
learning an ensemble of classifiers, provide with superior performance.
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Fig. 2: Performances of classical SVM (Left bar), sw-SVM (Middle bar) and
proposed method (Right bar) for the 8 subjects. Mean (std) accuracies across
the 8 subjects were 70.71(10.77), 80.71(6.61) and 87.51(3.37) respectively.

4 Conclusion

Spatio-temporal feature identification was addressed. An analysis of Global Field
Power highlighted time periods of interest where effects are likely to be the most
robust yielding to a data-driven temporal feature extraction. For each temporal
feature, a spatial filter was learned jointly with a classifier in the SVM theoretical
framework. Spatial filters were learned to optimize classification performance.
A weighted averaging on the so obtained ensemble of classifiers yielded to a ro-
bust final decision function. Experimental results on Error-related Potentials
illustrate the efficiency of the method from a physiological and a machine learn-
ing points of view. Further research may extract all relevant aspects of brain
post-stimulus dynamics recorded in EEG (spatio-temporal-frequential).
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