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Abstract. In this paper we present the results obtained by adopting an evolutionary 

approach to tune some critical neuron thresholds of a neuro-symbolic net that 

regulates the overall emergent behavior of a behavior-based robotic system. 

1 Introduction 

Due to the variety and complexity of real environments autonomous robots need 

control systems to assure an efficient use of their limited sensorial and cognitive 

resources and to balance sensors elaboration and actions execution. In order to deal 

with these problems and inspired by human attention mechanisms, in [1] we proposed 

an architecture, named Adaptive Innate Releasing Mechanism (AIRM), for Behavior 

Based Robots (BBR) capable of adapting the frequency of the sensors sampling rate 

both to the dynamic environment and to the internal states. 

 This kind of adaptation may be interpreted as a selective attention mechanism 

that filters information in order to focus on salient events. Some results, providing an 

improvement in the BBR performances, compared with the same architecture without 

AIRM, are reported in [2]. Moreover, in order to realize a controller able to manage in 

real time the reading rate adaptivity, we introduced a Neuro-Symbolic Net (AIRM-

net) [3] that implements this kind of attentive controller. 

 In this paper, we adopt an evolutionary algorithm, called Differential Evolution 

(DE) [4], to find, in the space of possible solutions, the best setting of some critical 

parameters of the net (thresholds), regulating the overall emergent behavior. We show 

how this kind of algorithm is able to find the thresholds values producing the best 

fitness and maintaining the implicit constraints introduced by the AIRM-net. 

2 The AIRM-net approach 

A BBR is usually characterized by a set of behaviors assembled to accomplish the 

desired activity. In the Schema Theory approach [5], a behavior is represented by a 

Perceptive Schema (PS), a Motor Schema (MS) and, in some cases, it can be 

controlled by a releasing mechanism triggering its activation. Our model adds to this 
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behavior schema a clock mechanism (AIRM), which samples data coming from 

sensors (Fig. 1(a)) with an adaptive frequency depending on the sensor input changing 

rate. This mechanism drastically reduces the computational load associated to the 

sensors elaboration. In order to face real time applications, in [3] we implemented the 

clock mechanism by means of a Neuro-Symbolic net (AIRM-net) (Fig. 1(b)). This net 

can be automatically designed by the Neuro-Symbolic Behavior Modelling Language 

(NSBL) [6] that allows to express propositional logical inference and to translate 

them into the logically equivalent neural network. 

  
(a) (b) 

Fig. 1: (a) Behavior schema; (b) AIRM-net controller schema. 

  

 The AIRM-net is characterized by a time interval, named clock period or pβ, 

used to space out two successive sensors readings. pβ is generated by the ZEIT 

module (Fig. 1(b)) and it is initially set to a maximum value (pbmax). The ZEIT module 

interacts with the INCR and DECR modules in order to change the clock period 

according to the increasing or decreasing input variations coming from INET module. 

Furthermore, by means of a releasing function (pβ), the ZEIT module communicates 

when the behavior has to process sensory inputs. 

2.1 AIRM-net activity 

The AIRM-net modules are sketched in Fig. 2. INCR and DECR modules are 

controlled by INET and DELTA modules. INET conveys the input signal , read by 

the sensor at time t and t-pβ, to the DELTA and DECR modules. The DELTA module 

is activated when the sensor signal increases between two successive readings. The 

rate variation can be evaluated with respect to the salience t/ t (where t= t- t-pβ) 

or to the temporal incremental ratio t/pβ. The INET module activates the DECR 

module if the input signal decreases. The interaction between DECR and INCR 

modules and then with the ZEIT module provides respectively an increasing or 

decreasing of the clock period. 

 In this paper we mainly deal with the INCR module (see Fig. 2) that provides a 

sort of focus of attention mechanism by reducing the period pβ. This module is formed 

by two layers of type_N neurons (iCL and ini,j) characterized by the following 

transfer function: 

 

 

 

where neuron j is either a type_N neuron or a type_  neuron. 

160

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.



8 7 6 5 4 3 2 1

1.9 1.9 1.9P3 P2 P1 P0

1.9 1.9 1.9

.04 .08

1.9 2.9 3.9

in1,1 in1,2 in1,3 in2,1 in2,2 in3,1

1CL 2CL 3CL

d1 d2 d3
31dd

CLd3 CLd2 CLd1 InD

DECR

INCR

ZEIT

-2 -3

-2

2 3

2

ra

rb

ta

td

tc

ca

cb
tf

max

max

InIt

.02

ds2 ds4

ds0

ds1

ds3 ds dsy dsz

dsx

s

max

max

.01 .001

.0001

max

I
N
E
T

DELTA

InI
max

or

8 7 6 5 4 3 2 1

1.9 1.9 1.9P3 P2 P1 P0

1.9 1.9 1.9

.04 .08

1.9 2.9 3.9

in1,1 in1,2 in1,3 in2,1 in2,2 in3,1

1CL 2CL 3CL

d1 d2 d3
31dd

CLd3 CLd2 CLd1 InD

DECR

INCR

ZEIT

-2 -3

-2

2 3

2

ra

rb

ta

td

tc

ca

cb
tf

max

max

InIt

.02

ds2 ds4

ds0

ds1

ds3 ds dsy dsz

dsx

s

max

max

.01 .001

.0001

max

I
N
E
T

DELTA

InI
max

or

 
Fig. 2: the AIRM-net 

 

 A type_  neuron, such as InIx neurons, evaluates the rate variation 

(InIσ= t/ t or InIt= t/pβ) and fires on the iCL neurons of the INCR module. 

Without loss of generality, we chose an updating policy for the clock that decreases 

its period according to the powers of two. Hence, we need n=log2(pbmax) iCL neurons. 

If iCL neuron fires, the new period will be equal to pbmax/2*i. In a first implementation 

of the net we experimentally determined the values for the iCL thresholds, depending 

on several factors such as the sensors precision, the special features of the 

environment and the behavior goal. The only constraint was that the iCL thresholds 

had to be in ascendant order in a way that the decreasing process be gradual and 

proportional to the variation of the input signal. 

3 Thresholds tuning 

In order to get a good performance for our robot and to extend and generalize the 

AIRM-net, the iCL neuron thresholds, regulating the period adaptation process, are 

tuned through an evolutionary approach; in particular, we deploy the DE algorithm. 

This algorithm gradually achieves the robot control system as an optimization 

problem. At each generation it produces a new population of candidate solutions 

combining the existing ones according to a mutation operator F (i.e. maintaining the 

most suitable solution for the optimization problem). Then, in order to increase the 

diversity of the perturbed parameter vectors (individuals of the new population), a 

crossover factor CR is introduced [4]. The general formulation of the problem is to 
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consider a fitness function that evaluates the system performances depending on the 

choice of the critical values of the iCL thresholds, controlling the AIRM-net, and to 

solve the minimization problem by finding the iCL thresholds combination that 

produces the best (minimum) value for the fitness. The fitness function evaluates the 

robot global behavior by considering some application-dependent performance 

measures (i.e. time to accomplish the goals, number of dangerous situations, etc.) 

during the interaction between the robot and the environment. 

3.1 Case study 

We tested our approach using a simulated Pionee-3DX mobile robot, endowed with a 

blob camera and sonars, and controlled by the Player/Stage tool [7]. The robot, 

without any a priori knowledge, has the task of finding food (gray circle in Fig. 3) in 

the environment, avoiding obstacles (black squares) and coming back to its nest, i.e., 

its starting point (striped rectangle).  

 

  
Fig. 3: Simulated environments. Fig. 4: BBR architecture. 

 

 This domain is a good testbed from a behavioral point of view, since it 

combines attractive and repulsive behaviors. The behaviors are represented by 

suitable AIRM-net provided respectively by InIσ or InIt neuron. The architecture (Fig. 

4) is characterized by three behaviors endowed by an AIRM, whose outputs are 

combined through the classic subsumption mechanism [8]. The DE algorithm is 

implemented considering as individual of a population a single robot whose AVOID 

AIRM-net is characterized by a particular combination of the iCL threshold values. 

The DE evaluates the performance of such a robot, while changing the iCL thresholds, 

by means of the following fitness function:  

 

x is an individual of the population; cc is the number of executed computational 

cycles; avoid_count represents the number of calls to the AVOID behavior; task_time 

is the maximum time allowed to accomplish the task; time is the effective time spent 

fitn (x ) M 1

avoid _ count

cc
M 2

num _ crash

cc
M 3

time

task _ time

M 4 (1 food _ count ) M 5 (1 nest _ reached ).
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to accomplish the goal; num_crash counts how many times the robot lies beyond a 

prefixed distance from an obstacle; food_found and nest_reached assume the integer 

values 0 or 1 and indicate whether the robot has reached respectively the food or the 

nest. M1=0.3, M2=0.3, M3=0.2, M4=0.1 and M5=0.1 are constant weights and their sum 

must be equal to 1. These weights are chosen according to the relevance we want to 

assign to the parameters considered by the fitness function. Hence, fitness values will 

be in the range [0,1], where 1 is the worst result and 0 is the optimum. Our goal is to 

tune the iCL thresholds in order to balance the tradeoff among these performances 

measures.  

 First of all, we initialize the starting parameters with a plausible setting. Then, 

the DE algorithm starts to produce an initial generation G0, of NP individuals, by 

randomly choosing the values in an unbounded space for the provided starting 

parameters. Since the interaction between the robot and the environment is not 

deterministic (due to the robot random movements), the same parameters combination 

can lead to different fitness value. Therefore, for each individual we calculate the 

average fitness on m runs. At the end of the m*NP simulations the algorithm selects 

the best fitness value for the global experimentation and a local best fitness value for 

the current generation. This process is repeated for GEN generations.  

3.2 Results evaluation 

In this section we report the results obtained by an experiment with NP=30 

individuals, GEN=37 generations, m=10 repetitions, F=0.85 and CF=0.9. In Fig. 5(a) 

the evolution of the global best fitness (solid line) and of the local best fitness (dashed 

line) obtained at each generation is displayed. Notice that, the best fitness starts 

decreasing after few generations. In Fig. 5(b) we also show the evolution of the 

AVOID AIRM-net iCL threshold values in the case of pbmax=8. 

 

 Let highlight that, following the DE algorithm, the parameters assume values in 

a wide range. In the description of the AIRM-net we claimed that the thresholds of 

neurons iCL must be in ascending order. While, at the beginning, the DE algorithm 

randomly selects the thresholds values, at last, we find that the best fitness value is 

generated by iCL threshold values, which are again in an ascending order, coherently 

  
(a) (b) 

Fig. 5: (a) Global/local best fitness; (b) iCL thresholds of the Avoid-net 
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with the logic implied in our net. In the AVOID AIRM-net the role played by the iCL 

thresholds is to appropriately filter the t/pβ values provided by InIt (see Fig. 2) in 

order to opportunely modify the clock period. Very small values of the iCL thresholds 

imply that for small variations of t/pβ all the iCL neurons fire and then the period pβ 

immediately turns to 1 (similarly to the classical architectures). Very high thresholds 

values imply a less sensitivity to minor changes (more similar to an architecture with 

fixed periodic activations). A high fitness value is observed in both cases: in the first 

case because of the increase of the avoid_count value (see Fig. 5(b) GEN=27) and in 

the second case due to an increase of the num_crash value (the sensors are checked 

only from time to time). In order to reduce both these performance measures, thus to 

minimize the fitness value, we have to balance the trade off between sensitivity and 

periodicity by choosing uniformly distributed thresholds. In our experiment we 

effectively observe that a best fitness is obtained when the iCL threshold values are 

distributed in the range of values assumed by t/pβ, once fixed the environment.  

4 Discussion 

In this paper, we proposed a neural net implementing a mechanism of periodical and 

adaptive activation of a robot perceptual schema, able to deal with real time 

applications. Moreover, in order to make this net general purpose, we employ an 

evolutionary approach called Differential Evolution (DE). Among different 

evolutionary algorithms, such as Genetic Algorithms or Particle Swarm Optimization, 

we considered DE, since it allows, as we have noticed in the results, to explore a 

range of values that is not initially restricted. The results obtained by the automatic 

tuning of the neuron thresholds related to the AVOID behavior are very promising. 

Starting from these results we intend to test our model by extending the tuning also to 

the thresholds regulating all the behaviors of the architecture. 

References  

[1] E. Burattini, S. Rossi, Periodic Adaptive Activation of Behaviors in Robotic System, IJPRAI - 

Special Issue on Brain, Vision and Artificial Intelligence 22 (5) pp. 987-999, 2008.  

[2] E. Burattini, A. Finzi, S. Rossi, and M. Staffa. Monitoring strategies for adaptive periodic control in 

behavior-based robotic systems. AT-EQUAL, pp. 130–135, 2009.  

[3] E. Burattini, M. De Gregorio and S. Rossi An Adaptive Oscillatory Neural Architecture for 
Controlling Behavior Based Robotic Systems, Neurocomputing, 73 pp. 2829–2836, 2010.  

[4] R. Storn and K. Price. Differential evolution - a simple and efficient heuristic for global optimization 

over continuous spaces. Journal of Global Optimization, 11 pp. 341–359, 1997. 

[5] M. A. Arbib, Schema Theory, The handbook of brain theory and neural networks, MIT Press, Cam-

bridge, MA, USA, 830-834, 1998.  

[6] E. Burattini, A. De Francesco, M. De Gregorio, NSL: A Neuro-Symbolic Language for a Neuro-
Symbolic Processor (NSP). IJNS. vol. 13, pp. 93-101, 2003.  

[7] B. Gerkey, R. Vaughan, and A. Howard, The player/stage project: Tools for multi-robot and 
distributed sensor systems, in Proc. ICAR 2003, pp. 317–323, 2003.  

[8] R. Brooks, A robust layered control system for a mobile robot. Robotics and Automation, IEEE 

Journal of Robotics and Automation, Vol. RA-2, No. 1, pp. 14-23, 1986.  

164

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

http://dx.doi.org/10.1016/j.neucom.2010.03.026
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1087032



