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Abstract. We investigate the benefit of combining both cluster assump-
tion and manifold assumption underlying most of the semi-supervised al-
gorithms using the flexibility and the efficiency of multi-kernel learning.
The multiple kernel version of Transductive SVM (a cluster assumption
based approach) is proposed and it is solved based on DC (Difference of
Convex functions) programming. Promising results on benchmark data
sets suggesting the effectiveness of proposed work.

1 Introduction

Most of semi-supervised algorithms rely on two assumptions: (1) the cluster as-
sumption believes in that points of the same cluster tend to be of the same class,
which leads to low density separation strategy [1]; (2) the manifold assumption
supports that the (high-dimensional) data lie (roughly) on a low-dimensional
manifold, which results in perfect solution of ”curse of dimensionality” [2].
Therefore, this raises the question of ”how much benefit one can get by combin-
ing the two assumptions” and represents a worth pursuiting task. In the kernel
framework, Xu et al. [3] implemented the aforementioned combination from per-
spective of the regularization strength induced by the unlabeled data. Dai and
Yeung [4] proposed an integrated regularization framework from perspective of
kernel selection. However, the pool of kernels considered for selection is obtained
via the basic kernels or from the pseudo-inverse of the Laplacian matrices built
by labeled and unlabeled data. Those algorithms solely provide predicted labels
of unlabeled samples and need an entire retrain to handle new samples.

In this paper, we pursue the goal of combining the cluster and manifold
assumptions to yield an inductive model. For this sake, we resort to transduc-
tive SVM (TSVM) whose decision function lies in the span of functions κ(xi, .)
(where κ is a kernel and x a sample) and hence can perform well in the out-
of-sample case. This flexibility also permits to adapt multiple kernel framework
to our problem by including kernels built following the cluster assumption as
well as the manifold preserving constraints. Compared with the complex op-
timization procedures involved in [3] and [4], our TSVM-MKL (transductive
multi-kernel SVM) benefits from the scalability of TSVM [5] and the efficiency
of fully supervised multi-kernel SVM solvers [6, 7]. Experimental results show
its effectiveness.
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2 Transductive SVM

We first describe the notations used in this paper. Let D = {x1, . . . , xn} denote
the entire data set. The first l samples are labeled DL = {(xi, yi) ∈ X ×{−1, 1}}
and followed by u unlabeled samples DU = {xi ∈ X}. The unkown labels of DU
are denoted as yU = [yl+1, . . . , yl+u]T . TSVM leverages the unlabeled data and
solves the following optimization:

min
f,b

1
2
‖f‖2H + C

l∑
i=1

VL(yi, g(xi)) + C∗
l+u∑

i=l+1

VU (|g(xi)|) (1)

where the loss over labeled data VL and unlabeled data VU is weighted by C and
C∗, which reflect confidence in labels and in the cluster assumption respectively.
The decision function is defined as g(x) = f(x) + b, where f is a function in
a Reproducing Kernel Hilbert Space (RKHS). To avoid the situation that all
unlabeled data are assigned to the same class, a balancing constraint is added:
1
u

∑l+u
i=l+1 g(xi) = 1

l

∑l
i=1 yi.

We adopt the Hinge loss (Hs(z) = max(0, s − z), where 0 ≤ s ≤ 1) on VL.
VU (|z|) = Rs(z) + Rs(−z) − (1 − s) is employed for the unlabeled data. Rs

is the Ramp loss defined as Rs(z) = H1(z) − Hs(z) (see [5] for more details).
Solving (1) with previous loss functions is equivalent to solve a classical SVM
with labeled data and also unlabeled data that counted twice with artificial
labels {−1, 1} [5]. That means yi = 1 when l + 1 ≤ i ≤ l + u, and yi = −1 when
l + u + 1 ≤ i ≤ l + 2u. In the next section, we formulate a multi-kernel version
of TSVM whose solution requires the full description of DC programming.

3 Multiple kernel TSVM

Multiple kernel learning is a way to incorporate information from different
sources to tackle a learning problem in kernel machinery framework. Numer-
ous efficient methods were proprosed recently [6, 7]. For our TSVM problem,
we consider the approach proposed in [6] whose formal setup is given by:

min
fk,b,d

1
2

m∑
k=1

ak

dk
‖fk‖2Hk

+ C

l∑
i=1

H1(yig(xi)) + C∗
l+2u∑
i=l+1

Rs(yig(xi)) (2)

s.t.
m∑

k=1

dk = 1,
1
u

l+u∑
i=l+1

g(xi) =
1
l

l∑
i=1

yi, dk ≥ 0 ∀k = 1, . . . , m.

The decision function is defined as: g(x) =
∑m

k=1 fk(x)+ b, where fk are defined
over different RHKSs induced by different kernels κk(·, ·). The vector d with
entries dk (1 ≤ k ≤ m) acts as the selector of appropriate kernels. ak is a
normalization term, usually set as the trace of the kernel matrix induced by κk.
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3.1 Solving the TSVM-MKL problem

SVM-MKL inherits the non-convexity of TSVM which is related to Ramp loss.
We employ DC programming to circumvent this shortcoming: first decomposes
the non-convex function as the difference of two convex functions, and then
approximate the concave part by its affine minorization iteratively. The following
decomposition of (2) are attained by decomposing the Ramp loss:

J1(θ) =
1
2

m∑
k=1

ak

dk
‖fk‖2Hk

+ C
l∑

i=1

H1(yig(xi)) + C∗
l+2u∑
i=l+1

H1(yig(xi))

J2(θ) = C∗
l+2u∑
i=l+1

Hs(yig(xi))

Parameter vector θ comprises of fk (1 ≤ k ≤ m), bias term b and coefficients dk.
From this point we can write: 〈θ,∇θJ2(θt)〉 = C∗ ∑l+2u

i=l+1 〈θ,∇θHs(yig
t(xi))〉

where ∇θHs(yig
t(xi)) is the derivative taken at the current decision function

gt(x). As J2(θ) is independent of dk, it should suffice to calculate 〈θ,∇θHs(ygt(x))〉
which involves terms relative to fk and the bias b. Recalling definition of Hs(z)
and using reproducing property of Hilbert space (f(x) = 〈f, k(x, ·)〉Hk

), we ob-
tain the relations: ∇bHs(ygt(x)) = νy and ∇fk

Hs(ygt(x)) = νyκk(x, ·). The
scalar ν is the gradient ∂H(z) at z = ygt(x):

ν =
{ −1 if ygt(x) < s

0 otherwise (3)

It is worth mentionning that Hinge loss function is differentiable everywhere
except in z = s. To be consistent, we should consider the subgradient. How-
ever, following [5] we arbitrary set ν = 0 at z = s. Gathering all those
informations, the affine approximation takes the form: 〈θ,∇θHs(ygt(x))〉 =
νyb+νy

∑m
k=1 fk(x) = νyg(x) and hence: 〈θ,∇θJ2(θt)〉 = C∗ ∑l+2u

i=l+1 νiyig(xi).
With all these elements, the application of DC programming to TSVM-MKL

leads to Algorithm 1. One can notice that this problem simply turns out to solve
iteratively a fully supervised multiple kernel SVM with additionnal balancing
constraint which does not harm the solution. So we can benefit from any efficient
off-the-shelf MKL solver as those presented in [6, 7].

3.2 Solving each iteration of TSVM-MKL

For completeness sake, we present in the sequel a adaptation of SimpleMKL [6]
to handle (4). Natively, the approach is iterative and can be summarized as
follows: assume dk is fixed, (4) turns to be a classical SVM problem. Let J̃(d) is
the minimum according to fk and b of (4) which explicitely depends on d. The
coefficients dk are therefore derived by solving the following convex problem [6]:

min
d

J̃(d) s.t. dk ≥ 0, ∀k = 1, · · · ,m and
m∑

k=1

dk = 1.
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Algorithm 1 Iterative procedure to solve TSVM-MKL
Set an initial estimation d0, b0, f0

k and t = 0
repeat

Calculate the terms νi, i = 1, . . . , l + 2u using (3).
Determine dt+1, bt+1, f t+1

k , k = 1, . . . , m solution of

min
fk,b,d

1
2

m∑
k=1

ak

dk
‖fk‖2H + C

l∑
i=1

H1(yig(xi)) + C∗
l+2u∑
i=l+1

H1(yig(xi)) (4)

−C∗
l+2u∑
i=l+1

νiyig(xi)

s.t.
m∑

k=1

dk = 1, dk ≥ 0, ∀k = 1, . . . , m,
1
u

l+u∑
i=l+1

g(xi) =
1
l

l∑
i=1

yi.

until a convergence criterion is satisfied.

This optimization can be achieved by gradient descent (d ← d − τ∇dJ̃(d))
projected on the simplex to ensure its feasibility. The new solution d is therefore
plugged into (4) which is solved for fk and b. This procedure alternates between
the calculation of d and fk (b). we deem it reaches convergence when d does
not evolve anymore. Assume the sub-differential of Hingle loss is defined as:

∂H1(z)/∂z =

⎧⎨
⎩

0 if z > 1
−1 if z < 1
−η̃ if z = 1 with 0 ≤ η̃ ≤ 1.

when dk is fixed, we will attain the solution for fk:

fk(x) =
dk

ak

l+2u∑
i=0

(αiyi + C∗γi)κk(xi, x) (5)

with these notations: (1) αi = Cηi, 0 ≤ αi ≤ C, for i = 1, · · · , l. (2) αi =
C∗ηi, 0 ≤ αi ≤ C∗, for i = l + 1, · · · , l + 2u. (3) y0 = 1 and κk(x0, x) =
1
u

∑l+u
i=l+1 κk(xi, x). (4) γi = 0 for i = 0, · · · , l; γi = νiyi for i = 0, · · · , l + 2u.

η stands for a subgradient and x0 is a virtual sample used to encode easily the
balancing constraint as in [5]. Following the same procedure, we get the optimal
condition related to the bias term b as:

∑l+2u
i=0 (αiyi + C∗γi) = 0. Finally,

the problem turns to solving a particular SVM-type problem with the kernel
κ(x1, x2) =

∑m
k=1

dk

ak
κk(x1, x2).

4 Experimental analysis

Five benchmark data sets (G50c, Text, Page, Link, and Pagelink) were selected
from [8]. Before experiments, we define the pool of kernels that composed of the
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Data set G50c Text Link Page Pagelink
SVM 9.7 18.9 26.7 20.8 14.2

LapSVM 5.4(0.6) 10.4(1.1) 14.9(8.8) 10.5(0.7) 6.3(0.6)
TSVM 5.7(1.6) 6.0(1.1) 11.6(2.9) 10.6(8.5) 8.6(7.3)

TSVM-MKL 4.4(0.7) 6.2(1.6) 10.0(6.4) 8.3(5.2) 5.6(5.8)

Table 1: Transductive setting: misclassification rates on unlabeled data

basic kernels and the manifold kernels. Gaussian and linear kernel are popular
choices for basic kernels. Manifold kernels are obtained by deforming basic ker-
nels in the same way in [8]. Involved hyper-parameters are (γ, σ, p,N), where
γ is the ratio that specify a trade-off between ambient regularization and de-
formation, σ is the width of similarity measure, N is the number of neighbored
samples, and p specifies the degree of induced Laplacian of the similarity graph.
Any tuple of parameters leads to a kernel.

Transductive setting The training set comprises of n samples, l of which
are labeled. Quality of TSVM-MKL is assessed by predicting the labels of the
n − l unlabeled samples. In our experiments, we set C = C�, C and s are se-
lected by grid search over [10 100 1000] and [0 : 0.2 : 0.6] respectively. Gaussian
kernel and euclidean nearest neighbor graphs with gaussian weights were used
on G50c and Text. Linear basic kernel and cosine nearest neighbor graphs with
gaussian weights were used for the rest data sets. Table 1 shows the results of
involved algorithms with standard deviation indicated in parantheses. Results
of SVM and LapSVM on G50c and Text are taken from [8]. To compare with
our proposed algorithm fairly, we redo all the other experiments in the same
setup with the same data splits.

Inductive setting The training set consists of l labeled samples and u un-
labeled samples, the test set consists of n − l − u data points. Performance is
evaluated by predicting the labels of unseen test set. It aims to assess the gen-
eralization ability of TSVM-MKL on the out-of-sample situation. We perform
a 4-fold cross validation for each data set. Optimal C, C∗ and s are attained
according to the misclassification rates on unlabeled sets. The multiple kernels
are defined in the same way with those in transductive setting. Table 2 reports
the results of predicting the labels of unlabeled and test data. Results of SVM
and LapSVM on G50C and Text are taken from [8]. We redo all the other exper-
iments in the same experimental setting. Experiments of SVM are implemented
in this way: train an SVM on labeled set, and test it on unseen test set.

From Table 1 and 2, we can see that TSVM-MKL achieves the best solution
in most cases. This indicates that the combination of cluster and manifold
assumption can improve the performance of semi-supervised algorithms.
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Data set G50c Text Link Page Pagelink
Algorithm Unlab Unlab Unlab Unlab Unlab

Test Test Test Test Test
SVM 9.7 20.9 24.8 23.8 25.1

9.7 20.9 24.8 23.8 25.1
LapSVM 4.9 9.9 21.2(21.4) 14.1(7.1) 12.8(8.4)

5.0 9.7 21.1(21.3) 15.5(6.1) 14.4(6.0)
TSVM 5.4(1.1) 6.5(1.1) 11.6(2.7) 11.5(8.3) 9.0(7.2)

6.1(1.3) 6.8(1.0) 11.2(2.8) 11.6(8.6) 8.9(7.0)
TSVM-MKL 4.5(5.0) 6.2(1.4) 9.6(6.0) 8.5(4.6) 5.6(5.7)

4.7(5.2) 6.4(1.5) 9.4(6.1) 9.0(4.9) 6.2(5.7)

Table 2: Inductive setting: misclassification rates on unlabeled and test data

5 Conclusion

This paper presents a multi-kernel framework for semi-supervised learning. It
fuses the manifold and cluster assumption into one learning task to obtain an
inductive inference model. Empirical studies on benchmark data sets demon-
strate that SSL-MKL is more effective than the single assumption algorithms.
Forthcoming work will be deserved to non-sparse kernel combination.
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