
A Similarity Function with Local Feature
Weighting for Structured Data

Rubén Suárez, Roćıo Garćıa-Durán and Fernando Fernández

Universidad Carlos III de Madrid - Computer Science Department
Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain

Abstract. The application of learning approaches as Kernel or Instance
Based methods to tree structured data requires the definition of similarity
functions able to deal with such data. A new similarity function for nearest
prototype classification in relational data that follows a tree structure is
defined in this paper. Its main characteristic is its capability to weight the
importance of the different data features in different areas of the feature
space. This work is built over two previous ideas: a similarity function
for Local Feature Weighting (LFW), and a Relational Nearest Prototype
Classification algorithm (RNPC).

1 Introduction

The definition of accurate distance metrics or kernels is a key issue that may
produce the same algorithm to behave very differently. For instance, in Nearest
Prototype (NP) classification [1], Local Feature Weighting (LFW) permits to use
a weighted euclidean distance, where the weight vector is different in different
regions of the space, generating non-linear borders among the different classes [2].
LFW has shown its utility in different works [3], but only in euclidean spaces. In
this work we propose to extend the ideas of LFW [2], and to integrate them into a
relational version of a NP algorithm, Relational Nearest Prototype Classification
(RNPC) [4]. RNPC uses evolutionary inspired operators to build a classifier in
an iterative way. Instead of using the same set of weights in the relational
distance, each prototype contributes its own weight vector. In each iteration of
the algorithm, both the location and the local weights of each prototype are re-
computed. The results in artificial datasets, as well as in a classical dataset in the
relational literature, are promising when compared with previous approaches.

This paper is organized as follows. Section 2 defines the similarity function
used and how LFW is applied. Section 3 describes LFW-RNPC (Local Feature
Weighting for Relational Nearest Prototype Classification), which computes the
location and the weight vector of each prototype at the same time. Section 4
reports the empirical evaluation performed and Section 5 describes the main
conclusions obtained.

2 A Similarity Function for Local Feature Weighting in
Nearest Prototype Classification

A Nearest Prototype Classifier, C, is composed of a set of N relational prototypes
C = {p1, . . . , pN}. Each prototype pi is an instance of the training set (or a

369

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

computed instance) which represents a region of the full data set. One instance
Ij belongs to a specific region, or to a prototype pi, when pi is the closest
prototype to Ij . All the instances in the same region are classified with the class
of the corresponding prototype. The nearest prototype classification has two
challenging problems. On the one hand, defining an accurate similarity function
between instances and prototypes [5]. On the other hand, to define the number
and location of the prototypes.

In this subsection we describe the distance measure used in LFW-RNPC,
which is based on the Relational Instance-Based Learning distance (ribl [6]),
but introduces some changes and incorporates the local weighting to the distance
calculation.

In a relational scheme, tuples of different relations are related through the
definition of keys or correspondences of values of attributes in two relations,
where the values of an attribute in the subordinated relation are restricted to
existing values in the higher level relation. In lfw-rnpc, each prototype p has
an associated set of weight vectors Wp. Each vector ~wp,h corresponds to a single
relation (h) in the relational schema, and contains the associated weight for each
attribute in the relation (Ah is the set of attributes of relation h, and H the set
of relations in the schema):

Wp = {~wp,h ∈ <|Ah||h ∈ H} (1)

The distance between two relational examples is computed recursively from
the root relation, where a single tuple corresponds to a single relational example.
The distance value between two tuples (I1 and I2) is the sum of the distance value
associated to each of its attributes, da, considering the weight of the attribute
wa, divided by the number of attributes in the relation, |Ah|:

d(I1, I2) =

∑
a∈Ah

wa ∗ da(I1(a), I2(a))
|Ah|

(2)

The contribution of each attribute depends on its type. For numeric at-
tributes we follow an absolute distance, and for nominal values we use the Ham-
ming distance. If the attribute is referenced by an attribute from other relation
(a foreign key) the recursive step is made in the distance calculation. This step
consists in the calculation of the distance between the sets of tuples that hold
the same value as the tuples I1 and I2 in the foreign key, shown in Equation (3):

da(v1, v2) =

∑
h∈Ha

D(s(h, a, v1), s(h, a, v2))
|Ha|

(3)

where D is a distance measure between sets, Ha is the set of relations that
reference the attribute a, and s(h, a, v) is the set of tuples in the relation h that
hold the value v in the attribute that references the attribute a.

The way the sets are compared is the main difference between relational
distances. In lfw-rnpc the ribl [7] distance measure between sets is used. As
it can be seen in equation (4), the distance between sets A and B is based on

370

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

the distance of its elements (ai and bi), which are tuples of values obtained by
using Equation (2).

D(A, B) =

P

ai
minbj

(d(ai,bj))

|B| if |A| < |B|P
bi

minaj
(d(ai,bj))

|A| if |A| ≥ |B|
(4)

3 Computing the Weights of the Similarity Function: The
LFW-RNPC Algorithm

The lfw-rnpc algorithm is summarized in Figure 1. It receives as input the
set of training instances. From this set, lfw-rnpc generates a first classifier
with only one prototype randomly chosen. It also receives the maximum num-
ber of iterations, it, and, optionally, a bound to the number of prototypes,
MaxPrototypes. It returns the classifier (set of prototypes) obtained by iter-
atively applying evolutionary-based operators: mutation, reproduction, fight,
move and die. All those operators are the same as those used in the rnpc
algorithm, and an extended description can be found in the literature [8, 4].

Function LFW-RNPC(InputSet, X; MaxNumberIterations, it): Classifier
Initialize C1 =choose-randomly(X);
Initialize BestC=C1;
i = 1;

repeat{
Ci+1 = mutation(X, Ci);
Ci+1 = reproduction(X, Ci+1);
Ci+1 = fight(X, Ci+1);
Ci+1 = move(X, Ci+1);
Ci+1 = die(Ci+1);
Ci+1 = weights-updating(Ci+1);
Ci+1 = instance-asignation(Ci+1);
BestC = iteration-evaluation(X,Ci+1);
i = i + 1

}until(i > it);

return BestC;

Fig. 1: lfw-rnpc Algorithm.

When the operators that modify the populations of prototypes are completed
the weights are recomputed (weights-updating). The weight updating mech-
anism is based in the one used in the lfw-npc algorithm [2].

Each attribute has an associated distortion measure (Dh
a), which represents

the average difference between the attribute a in relation h of each relational
example (I) and the prototype (pi) of its region (Ri is the set of examples in
region i):

Dh
a =

1
||Ri||

∑
I∈Ri

da(I, pi)wpi,a (5)

371

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

The local weighting consists in the equiparation of all the distortion values
in the same region:

∀h ∈ H,∀a ∈ Ah, Dh
a = 1 (6)

To do this a weight related to each attribute is calculated (wpi,a):

wpi,a =
Dh

a ∗ ||Ri||∑
I∈Ri

da(I, pi)
(7)

As regions change through the algorithm execution, in each iteration weights
are updated:

∆wpi,a =
||Ri||∑

I∈Ri
da(I, pi)

− wpi,a (8)

A parameter z ∈ [0, 1] is added to control the change of the weights:

wt+1
pi,a = wt

pi,a + z ∗∆wt+1
pi,a (9)

Then, the instance-assignation is made. In this step each training instance
is inserted in its nearest prototype region (its nearest prototype can be different
from the past iteration because of the application of the evolutionary operators
and the updating of the weights). To do this, the distance between each example
and each prototype is computed, and the nearest prototype is the one that
minimizes this measure.

Before finishing the iteration the current classifier is evaluated (iteration-
evaluation). This evaluation is done by measuring the classification accuracy of
the current classifier in the training set. If the resulting accuracy is better than
the best classifier accuracy obtained in past iterations, the classifier is recorded
as the best one. The algorithm returns the classifier with the best accuracy in
the training set.

4 Evaluation

The algorithm evaluation was done in four different domains, three artificial
ones, and another one used previously in literature.

The three artificial domains were created to test the efficiency of the local
weighting on relational domains. In each domain distinct regions have been
defined, so that each region is represented by a determined range of values, so
that regions with different ranges in the same attributes can belong to the same
class and the local weighting can be exploited. These domains are described
briefly:

• Domain 1: a simple domain consisting of a single relation and two at-
tributes. Two regions exist, each of which belongs to a class. This domain
contains 200 relational examples.

372

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

• Domain 2: a domain with 2 relations and 2 classes. In this domain 8
regions are defined, 4 for each class, and contains 200 relational examples.

• Domain 3: this domain consists of two relations and divides the space into
two classes. It contains 800 relational examples.

• Musk: contains 92 relational examples divided into two classes, and using
two different relations. Tuples of the root relation define the class and
identifier of an example, and the other relation defines the set of tuples
that describe it, with 166 attributes.

The experiments consisted of 4 cross-validations with 10 folds for each value
of the parameter z. The results obtained from each domain are reported in
figure 2, where accuracy obtained both for training and test is shown.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 0.1 0.3 0.5 0.7 0.9 1

A
cc

ur
ac

y

z
Training Test

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 0 0.1 0.3 0.5 0.7 0.9 1

A
cc

ur
ac

y

z
Training Test

Domain 1 Domain 2

 84

 86

 88

 90

 92

 94

 96

 98

 0 0.1 0.3 0.5 0.7 0.9 1

A
cc

ur
ac

y

z
Training Test

 45

 50

 55

 60

 65

 70

 75

 80

 85

 0 0.1 0.3 0.5 0.7 0.9 1

A
cc

ur
ac

y

z
Training Test

Domain 3 Musk

Fig. 2: Experimental results.

The purpose of the evaluation is to see the efficiency of the local weighting,
comparing the case of no weighting (z = 0), where lfw-rnpc behaves as rnpc
and the different values of weight updating.

The results in domains 1, 2 and 3 (artificials) show that using the local
weighting improves the results obtained from the case of no updating. In Domain
1, the best results are obtained with z = 1. This could happen because the search

373

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

performed in the space of classifiers and weight configurations with this value
of z is completely greedy and can approach the classifier that maximizes the
accuracy in this domain. In Domains 2 and 3, however, intermediate values of
z generate better results, showing that the results depends on such parameter.
In the Musk domain, the local feature weighting is also able to improve the
results, obtaining almost a 60 percent of accuracy. Domains 1 and Musk show
a strong overfitting to training data (differences among training and test results
are around a 30%) which demonstrate that such overfitting should be avoided
somehow.

5 Conclusions

In this paper we have described a new nearest prototype classification algorithm
for tree structured data which is able to perform local feature weighting. The
algorithm has been built using ideas previously developed in vectorial represen-
tations, and the empirical evaluation has shown promising results. In future we
expect to compare different approaches and perform a wider evaluation of the
method in more data sets.

Acknowledgments

This work has been partially supported by Spanish MICINN project number
TIN2008-06701-C03-03 and the regional project CCG10-UC3M/TIC-5597.

References

[1] Ludmila I. Kuncheva and James C. Bezdek. Nearest prototype classification: Cluster-
ing, genetic algorithms, or random search? IEEE Transactions on Systems, Man and
Cybernetics, 28(1):160–164, February 1998.

[2] Fernando Fernández and Pedro Isasi. Local feature weighting in nearest prototype classi-
fication. IEEE Transactions on Neural Networks, 19(1):40–53, 2008.

[3] Jae Heon Park, Kwang Hyuk Im, Chung-Kwan Shin, and Sang Chan Park. Mbnr: Case-
based reasoning with local feature weighting by neural network. Applied Intelligence,
21:265–276, 2004. 10.1023/B:APIN.0000043559.83167.3d.

[4] Roćıo Garćıa, Fernando Fenrnández, and Daniel Borrajo. A prototype-based method for
classification with time constraints: A case study on automated planning. Pattern Analysis
and Applications, 2011.

[5] M. Sebag. Distance induction in first order logic. In S. Džeroski and N. Lavrač, editors,
Proceedings of the 7th International Workshop on Inductive Logic Programming, volume
1297, pages 264–272. Springer-Verlag, 1997.

[6] M. Kirsten, S. Wrobel, and T. Horváth. Relational Data Mining, chapter Distance Based
Approaches to Relational Learning and Clustering, pages 213–232. Springer, 2001.

[7] W. Emde and D. Wettschereck. Relational instance-based learning. In Proceedings of the
Thirteen International Conference on Machine Learning (ICML’96), pages 122–130, 1996.

[8] Roćıo Garćıa-Durán, Fernando Fernández, and Daniel Borrajo. Nearest prototype clas-
sification for relational learning. In Conference on Inductive Logic Programming, pages
89–91, Santiago de Compostela, Spain, 2006.

374

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

