
Multivariate class labeling in Robust Soft LVQ

Petra Schneider1, Tina Geweniger2, Frank-Michael Schleif3,
Michael Biehl4 and Thomas Villmann2

1- School of Clinical and Experimental Medicine - University of Birmingham
Birmingham B15 2TT - United Kingdom

2- Department of MPI - University of Applied Sciences Mittweida
Technikumplatz 17 - 09648 Mittweida - Germany

3- CITEC - University of Bielefeld
Universitätsstrasse 21-23 - 33615 Bielefeld - Germany

4- Institute for Mathematics and Computer Science - University of Groningen
P.O. Box 407 - 9700 AK Groningen - The Netherlands

Abstract. We introduce a generalization of Robust Soft Learning Vector
Quantization (RSLVQ). This algorithm for nearest prototype classification
is derived from an explicit cost function and follows the dynamics of a
stochastic gradient ascent. We generalize the RSLVQ cost function with
respect to vectorial class labels: Probabilistic LVQ (PLVQ) allows to re-
alize multivariate class memberships for prototypes and training samples,
and the prototype labels can be learned from the data during training. We
present experiments to demonstrate the new algorithm in practice.

1 Introduction

Learning Vector Quantization (LVQ) is a supervised classification scheme which
was introduced by Kohonen in 1986 [1]. The approach still enjoys great popu-
larity and numerous modifications of the original algorithm have been proposed
(see e.g. [2, 3, 4]). The algorithms learn a set of class-specific prototype vec-
tors which represent the data in the input space. The set of labeled prototypes
parameterizes a nearest-prototype classification, e.g. an unknown pattern is as-
signed to the class represented by the closest prototype with respect to some
distance metric. The popularity of the approach is due to numerous reasons
like the computational simplicity and sparsity of the resulting model. A huge
collection of successful applications of LVQ can be found in [5].

The basic LVQ approach relies on the major assumption that training data
and prototypes are uniquely associated with one specific class. This does not
allow to represent uncertainty or possibility in the data. However, this is a
common phenomenon, e.g. in biological or medical applications [6]. In medical
diagnosis for example, the relation of clinical and laboratory findings to dis-
eases is probabilistic. Furthermore, input data can be imprecise due to missing
information or additive noise.

Extending Robust Soft Learning Vector Quantization (RSLVQ, [3]), we present
a novel LVQ variant which allows to realize multivariate class memberships for
training data and prototypes. RSLVQ is based on a cost function which is de-
fined in terms of a likelihood ratio. We derive the generalization of the RSLVQ
cost function with respect to vectorial class labels. In particular, we suppose
that each element of the label vectors is in the range [0, 1] describing the prob-
abilistic assignment of the data and the prototypes to a certain class. Training

17

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

consists in the optimization of the extended cost function with respect to the
prototype locations, the prototype labels and the algorithm’s hyperparameter
(see [3]). In the working phase, classification is based on the value of the likeli-
hood ratio, since this approach directly follows the objective of learning. As will
be demonstrated in the experiments, adaptive prototype labeling additionally
simplifies the model selection for LVQ systems.

2 Review of Robust Soft LVQ

Assume training data {ξk, yk}
l
k=1 ∈ R

n × {1, . . . , C} are given, n denoting the
data dimensionality and C the number of different classes. An LVQ network
W = {(wj , c(wj)) : R

n × {1, . . . , C}}mj=1 consists of a number of n-dimensional
prototypes wj which are characterized by their location in feature space and
their class label c(wj). Given a distance measure d(ξ,w) in R

n, classification is
based on a winner-takes-all scheme: a data point ξ ∈ R

n is assigned to the label
c(wi) of prototype wi with d(ξ,wi) ≤ d(ξ,wj), ∀j 6= i. Many LVQ variants
use the squared Euclidean distance d(ξ,w) = (ξ −w)T (ξ −w) to quantify the
similarity between feature vectors and the prototypes.

The Robust Soft LVQ - algorithm [3] to train the prototype locations opti-
mizes a cost function to adapt the prototypes to the data. The cost function is
based on a statistical modeling of the given data distribution, i.e. the probability
density is described by a mixture model. It is assumed that every component j
of the mixture generates data which belongs to only one of the C classes. The
probability density of the data is approximated by

p(ξ|W) =
C
∑

i=1

∑

j:c(wj)=i

P (j) p(ξ|j), (1)

where
∑

j P (j) = 1, and the conditional density p(ξ|j) is a function of the pro-

totype wj . A possible choice is the normalized exponential form p(ξ|j) = K(j) ·

exp f(ξ,wj , σ
2
j). In [3], a Gaussian mixture is assumed with K(j) = (2πσ2

j)
−n/2

and f(ξ,wj , σ
2
j) = −d(ξ,wj)/2σ

2
j ; d is the squared Euclidean distance, and

every component is assumed to have equal variance σ2
j = σ2 and equal prior

probability P (j) = 1/m, ∀j. Accordingly, class-specific densities correspond to

p(ξ, y|W) =
∑

j:c(wj)=y

P (j) p(ξ|j). (2)

RSLVQ maximizes the likelihood ratio

L =

l
∏

k=1

L(ξk, yk),with L(ξk, yk) =
p(ξk, yk|W)

p(ξk|W)
. (3)

The RSLVQ cost function is defined as ERSLVQ = log (L), and it is maximized
with respect to the prototype locations by means of stochastic gradient ascent.
The learning rule is derived in [3]:

∆wj =
α1

σ2

{

(Py(j|ξ)− P (j|ξ))(ξ −wj), c(wj) = y,
−P (j|ξ)(ξ −wj), c(wj) 6= y,

(4)

18

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ξ

P
y
(j
|ξ

)
-P

(j
|ξ

)

y1 =1, y2 =0
y1 =0.9, y2 =0.1
y1 =0.7, y2 =0.3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ξ

P
y
(j
|ξ

)
-P

(j
|ξ

)

y1 =0, y2 =1
y1 =0.1, y2 =0.9
y1 =0.3, y2 =0.7

Fig. 1: Illustration of the update strength affecting prototype w1 in a one-dimensional
setting with prototypes w1 = −1, c1 = [0.8, 0.2] and w2 = 1, c2 = [0.4, 0.6]. The
curves correspond to training samples with different label y. Left: y1

> 0.5, σ2 = 0.5.
Right: y1

< 0.5, σ2 = 0.15.

where α1 is the learning rate, and Py(j|ξ), P (j|ξ) are assignment probabilities

Py(j|ξ) =
exp f(ξ,wj , σ

2)
∑

i:c(wi)=y exp f(ξ,wi, σ2)
, P (j|ξ) =

exp f(ξ,wj , σ
2)

∑

i exp f(ξ,wi, σ2)
(5)

with respect to one sample (ξ, y). Prototypes with c(w) = y are attracted by
the training pattern, while prototypes carrying any other class label are repelled.

The training dynamics of RSLVQ highly depend on the hyperparameter σ2.
Since it controls the assignment probabilities in Eq. (5), it controls the strength
of the attractive and repulsive forces in Eq. (4). In the limit σ2 → 0, RSLVQ
reduces to a learning-from-mistakes scheme (see [3] for details).

3 Probabilistic LVQ

In the following, we introduce the generalization of the RSLVQ cost function
with respect to vectorial class labels for the prototypes and the input data. We
provide the learning rules for the prototype vectors, the prototype labels and
the hyperparameter σ2 derived as a stochastic gradient ascent of the generalized
cost function. In the limit of crisp class memberships, the cost function and the
updates are equivalent to the original RSLVQ algorithm.

Generalized cost function: In the generalized version of RSLVQ, input pat-
terns and prototypes carry probabilistic label vectors y, c ∈ [0, 1]C , with

∑

i y
i =

1 and
∑

i c
i = 1. Component yi constitutes the assignment probability of sam-

ple ξ to class i; the same holds for the prototypes respectively. Under this
assumption, the definition of W (see Sec. 2) changes to

W =

{

(wj , cj) |R
n × [0, 1]C ,with

∑

i

cij = 1

}m

j=1

. (6)

Accordingly, the global data density is defined by

p(ξ|W) =

C
∑

k=1

m
∑

j=1

ckj P (j) p(ξ|j). (7)

19

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

The generalization of the class-specific density in Eq. (2) constitutes the weighted
sum of the class-specific densities; the weight values are given by the assignment
probabilities of the input sample to the different classes

p(ξ,y|W) =

C
∑

k=1

yk
m
∑

j=1

ckj P (j) p(ξ|j). (8)

The cost function of the generalized version of RSLVQ arises out of ERSLVQ by
defining the likelihood ratio (Eq. (3)) in terms of p(ξ|W) and p(ξ,y|W) as de-
fined in Eq.s (7), (8). We term the new algorithm Probabilistic LVQ (PLVQ).

Learning rules: In this contribution, we restrict our analysis to the adaptation
of a global hyperparameter σ2 = σ2

j , ∀j. To be in accordance with [3], we choose

f(ξ,wj , σ
2) and K(j) corresponding to a Gaussian mixture model and use the

squared Euclidean distance. Details of the derivatives ∂EPLVQ/∂{w,ξ,σ2} will be
presented elsewhere. The derivatives yield the following update rules for the
prototypes and the hyperparameter

∆wj =
α1

σ2
Pj(ξ,y) (ξ −wj), ∆σ2 =

α2

σ2
Pj(ξ,y)

d(ξ,wj)

σ2
. (9)

with Pj(ξ,y) =
(

Py(j|ξ)− P (j|ξ)
)

, and Py(j|ξ) is the generalized class-specific
assignment probability

Py(j|ξ) =

∑

k y
kckjP (j)K(j) exp f(ξ,wj , σ

2)

p(ξ,y|W)
. (10)

The learning rule for the prototype labels results in

∆cj = α3

(

y

p(ξ,y|W)
−

1

p(ξ|W)

)

P (j) p(ξ|j). (11)

The Probabilistic LVQ algorithm is defined in terms of Eqs. (9) and (11), and
α1,2,3 are the learning rates.

Note that Pj(ξ,y) turns into the weight factors in Eq. (4), if y and cj
specify crisp class memberships. Fig. 1 demonstrates the influence of y, cj and
the hyperparameter σ2 on Pj(ξ,y) in a one-dimensional example setting. In this
scenario, all training samples with non-crisp label cause attractive forces on w1

for ξ → −∞(Pj(ξ,y) > 0) and have repulsive effects for ξ → +∞, (Pj(ξ,y) < 0).
Contrary, training samples with crisp labeling have either attractive or repulsive
effects all over feature space. The extreme values of the weight factors are
determined by the prototype label c1 and c2; the hyperparameter σ2 controls
the transition between attractive and repulsive effects.

Classification: The original LVQ approach of distance-based classification is
not applicable in PLVQ, since the prototypes represent multiple classes. We pro-
pose to use the value of the likelihood ratio defining the PLVQ cost function as
classification criterion for the new algorithm: An unknown feature vector ξ is as-

signed to class i with L(ξ, i) > L(ξ, j), ∀j 6= i, where L(ξ, i) =
p(ξ,y

i
|W)

p(ξ|W)
and the

label vector yi specifies the unique assignment to class i. Highest likelihood-ratio
classification directly follows the objective of learning and has already shown
promising results in RSLVQ (see [7]).

20

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

w1

w2

w3

Class 1
Class 2
Class 3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

w1

w2 w3

w4

w5

Class 1
Class 2
Class 3

Fig. 2: Artificial data set. The figures show the prototype locations after PLVQ train-
ing with three and five prototypes obtained in one training run. The corresponding
prototype label are stated in Tab. 1.

4 Experiments

We apply PLVQ to the artificial data visualized in Fig. 2. The data set consists
of three classes in a two-dimensional space. Each class consists of 60 samples
which are separated in two clusters. Note that we consider the special case of
training data with crisp class memberships in this application. We compare the
performance of RSLVQ and PLVQ using different numbers of prototypes in com-
bination with an adaptive hyperparameter σ2. We use the learning parameter
settings α1,3 = 5 · 10−4 and α2 = σ2(0) · 10−5 with σ2(0) = 0.02. We randomly
select 80% of the samples of each class for training and use the remaining data
for testing. We perform the experiment on 25 random constellations of training
and test set and train the system for 200 epochs in each run. Prototypes are
initialized close the global mean value of the training data. Initial prototype
labels in PLVQ are generated randomly, followed by a normalization step.

The mean error rates on the test sets are stated in Tab. 1, right. Due to
the nature of the data set, RSLVQ fails, if the data is approximated by only one
prototype per class. Remarkably, PLVQ already performs significantly better
with the same number of prototypes. Fig. 2 (left) exemplary shows the final

Table 1: Artificial data set. Left: Prototype label after PLVQ-training with three and
five prototypes obtained in one training run. The corresponding prototype locations
are displayed in Fig. 2. Right: Mean test errors of RSLVQ and PLVQ using different
numbers of prototypes.

3 Prototypes 5 Prototypes

c1 [0.5, 0.5, 0] [0.13, 0.87, 0]

c2 [0.0, 0.0, 1.0] [0.0, 0.0, 1.0]

c3 [0.0, 0.0, 1.0] [0.84, 0.16, 0.0]

c4 [0.0, 0.0, 1.0]

c5 [0.5, 0.5, 0.0]

#Prototypes RSLVQ PLVQ

3 0.5 0.35

4 0.31

5 0.28

6 0.18 0.26

21

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

prototype constellations obtained in one experiment; the corresponding proto-
type labels are stated in Tab. 1, left. Obviously, prototype w1 represents classes
one and two equally. Note that increasing the number of prototypes in PLVQ
does not require the specification of the prototypes’ class memberships before
training is initialized. RSLVQ with two prototypes per class outperforms PLVQ
with six prototypes. Note however that for this result prior information about
the structure of the data was taken into account to select the model settings.
Another showcase of a PLVQ system consisting of five prototypes is given in
Fig. 2, right, and Tab. 1, left. It verifies that PLVQ detects prototypes with
shared class memberships, if not all clusters can be approximated by individual
prototypes.

First experiments on high-dimensional real life data including probabilistic
labeling of training data showed promising results with local adaptive hyperpa-
rameters σ2

j . The adaptation of a global σ2 in PLVQ turned out to be insufficient
in more complex classification scenarios. Detailed experiments and investigations
of this issue will be presented in forthcoming publications.

5 Conclusion

In this contribution, we introduced a novel LVQ variant which allows to in-
corporate probabilistic label information into the training process of the model
parameters. Probabilistic Learning Vector Quantization generalizes the success-
ful Robust Soft LVQ such that vectorial labeling for prototypes and training
samples can be processed. In particular, the approach allows to realize adaptive
class labels for the prototypes. It was demonstrated in experiments that this
ability is especially beneficial, if no prior information about the structure of the
data is available.

Two extensions of PLVQ will be subject to future work: As outlined in Sec. 4,
we will investigate PLVQ with local, adaptive hyperparameters in real life appli-
cations. Furthermore, a serious restriction of the algorithm consists in the use of
the Euclidean distance measure. Metric adaptation techniques have shown great
potential to improve the performance of RSLVQ [4], and comparable influence
can be expected for PLVQ.

References

[1] T. Kohonen. Self-Organizing Maps. Springer, Berlin, Heidelberg, second edition, 1997.

[2] A. Sato and K. Yamada. Generalized learning vector quantization. In M. C. Mozer
D. S. Touretzky and M. E. Hasselmo, editors, Advances in Neural Information Processing
Systems 8. Proceedings of the 1995 Conference, pages 423–9, Cambridge, MA, USA, 1996.
MIT Press.

[3] Sambu Seo and Klaus Obermayer. Soft learning vector quantization. Neural Computation,
15(7):1589–1604, 2003.

[4] P. Schneider, M. Biehl, and B. Hammer. Distance learning in discriminative vector quan-
tization. Neural Computation, 21(10):2942–2969, 2009.

[5] Bibliography on the Self-Organizing Map (SOM) and Learning Vector Quantization
(LVQ). Neural Networks Research Centre, Helskinki University of Technology, 2002.

[6] A. Torres and J.J. Nieto. Fuzzy logic in medicine and bioinformatics. Journal of
Biomedicine and Biotechnology, 2006(2), 2006.

[7] P. Schneider, M. Biehl, and B. Hammer. Hyperparameter learning in probabilisitc
prototype-based models. Neurocomputing, 73(7-9):1117–1124, 2010.

22

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

