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Abstract. This is the introduction paper to a special session held on

ESANN conference 2011. It reviews and highlights recent developments

and new direction in information related learning, which is a fastly de-

veloping research area. These algorithms are based on the fundamental

principles of information theory and relate them implicitly or explicitly to

learning algoithms and strategies.

1 Introduction

The amount of available data to be analyzed and processed is continuously in-

creasing. However, normally one is not interested in the data but in the infor-

mation they contain. Therefore, the need for efficient and reliable algorithms

and methods is very actual and increasingly important. Different strategies are

possible ranging from unsupervised compression, random selection, projection

to supervised feature selection, or shape detection, to name just a few. All these

approaches have in common that information contained in the data should be

extracted emphasizing different aspects depending on the task, i.e. they realize

an information processing system. Hence, these methods are based implicitly or

explicitly on information theory and their consequences.

In this paper, we will draw attention to recent developments of this field.

Obviously, this is not a complete overview but still picks some interesting new

aspects of the ongoing research and remembers also well known facts in that

area.

2 Information theoretic learning via statistics and proba-

bility

Probability theory and statistics are essentially related to information theory.

Statistical distributions like Gaussians and others are directly involved in fun-

damental theorems of information theory: The second Gibbs theorem about
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maximum Shannon entropy property of normal distributions is the most promi-

nent fact [18]. Similarity measures were related to probability theory [6], leading

to divergence measures as generalized distances like the Kullback-Leibler diver-

gence [35]. Trough time, a large variety of divergences were developed and several

classes of divergences identified [14],[64]. This research has new focus [39] and

involves modern differential-geometrical methods in statistics and probability

theory [3] and in statistical learning [21].

Models in machine learning directly include these results into learning al-

gorithms and strategies. One of the earliest approaches connecting statistics,

information theory and biologically motivated learning is the perceptron neuron

model of neurons [50]. Multilayer networks can be optimized avoiding over-

training using mutual information [17]. Boltzmann networks are derived from

information principles of statistical mechanics [1],[42].

Source separation of data channels is based on the statistical deconvolu-

tion. Different aspects can be investigated like independent component analy-

sis (ICA) and blind source separation (BSS) maximizing conditional probabil-

ities [30] while also least- dependent-component analysis is in the focus [55].

New approaches incorporate information theoretic principles directly: Pham
investigated BSS based on mutual information [47], whereas Minami applied
β-divergences [44]. A method for learning overcomplete data representations

and performing overcomplete noisy blind source separation is the sparse coding

neural gas (SCNG) [36].

Related to statistical independence, the more difficult problem of estimating

statistical dependence is becoming increasingly important and novel algorithms

are becoming available [52],[54],[53]. Their applicability is enormous, ranging

from variable selection, to BSS to statistical causality.

A comprehensive overview for non-negative matrix and tensor factorization

is the book by Cichocki & Amari [16]. Recent results including modern di-
vergences (generalized α-β-divergences were just published [15],[14]. Further, it
should be noticed that an information theoretic divergence measure like Rényi-

divergences (belonging to the family of α-divergences) capture directly the sta-
tistical information contained in the data as expressed by the probability density

function.

Otherwise, information theoretic values like the mutual information can be

explicitly estimated from data [34]. Here, standard approaches of machine learn-

ing such as topographic maps or kernels are applied to achieve accurate estima-

tors [45],[61],[60]. Jenssen et al. have established equivalencies between kernel
methods and information theoretic methods [33]. Another example in informa-

tion theoretic learning uses Rényi-entropy as a cost function instead of the mean

squared error, which can be determined either by Parzen estimation [48] or on

the basis of the nearest neighbor entropy estimation model [40].

Generally, the question in this context can be translated as: how to deal with

the uncertainty contained in data. One way in this direction is to interpret the

data as fuzzy values or to generate information about data equipped with uncer-

tainty. This could be done in probabilistic terms, as for example by multivariate
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class labeling [51], or more general fuzzy approaches.

3 Information theoretic feature extraction and selection

Feature extraction or selection can be seen as a kind of dimension reduction of

complex data by constructing combinations of a few variables. These variables

should lead to a simplification of the data in a given context but still describing

it with sufficient accuracy. By removing most irrelevant and redundant features,

feature selection and extraction helps to improve the performance of learning

models. It is clear that the complexity of finding an optimal solution grows

with the number of features exponentially. Yet, frequently only a sufficient

good solution is required. Most feature selection approaches are supervised

schemes such that class information or expected regression values can be used

for constructing such suboptimal feature subsets or respective ranking list. The

strategies to achieve this goal can be classical Bayesian inference schemes [42],

or statistical approaches like correlation or covariance investigation [56],[46].

An alternative to these approaches is feature extraction using the non-

parametric mutual information. This can be realized by explicit maximization

of the respective mutual information [57], or by learning of appropriate feature

transformation optimizing the mutual information based on Rényi-entropies [58].

Andonie & Cataron suggested the utilization of a kind of information energy
for relevance learning, which is structural similar to the Rényi-entropy but differ-

ent in detail [4]. Thereby, relevance learning is a more general approach of input

variable weighting in learning vector quantization [27]. Introducing sparseness

constraints in this scheme according to the Occam’s razor principle, the spar-

sity can be expressed in terms of entropy and, therefore, used for respective

optimization [66].

Information theoretic feature selection for functional data classification is

investigated in [25] based on mutual information optimization while forward-

backward strategy search for regression problems based on mutual information

is studied in [24].

4 Information theoretic approaches for vector quantiza-

tion

Vector quantization by a set of prototypes w is one of the most prominent

methods for clustering and data compression based on the optimization of the

γ-reconstruction error EV Q (γ). One of the key results concerning information
theoretic principles for vector quantization is the magnification law discovered by

Zador [23],[68]: If the data are given as vectors v in q-dimensional Euclidean
space according to a probability density P and ρ is the probability, then the
magnification law ρ ∼ Pα holds with the magnification factor α = q

q+γ related

to the reconstruction error according to

EV Q (γ) =

Z
kv−w (v)kγE P (v) d (v)
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with kv −w (v)kE is the Euclidean distance of the data vector and the prototype
w (v) representing it. This is the basic principle of vector quantization based on
Euclidean distances. For different schemes like self-organizing maps, neural gas

variants slightly different magnification factors are obtained due to the neigh-

borhood cooperativeness during prototype adaptation [62],[26],[43]. Optimum

magnification is obtained for α = 1, which is equivalent to maximum mutual

information [68]. Yet, it is possible to control the magnification of most of these

algorithm by different strategies such as local learning, winner relaxing or fre-

quency sensitive competitive learning [2],[19]. For a overview we refer to [62].

If divergences are used instead of the Euclidean norm, optimummagnification

α = 1 can also be achieved by maximum entropy learning [65]. Recently, an

approximation to α = 1 was also obtained when the mean square error in the self-
organizing map training is substituted by correntropy [13]. Divergence measure

captures directly the statistical information contained in the data as expressed

by the probability density function and can thus produce non-convex cluster

boundaries. Generally, vector quantization using different types of divergences

as similarity measure is an actual hot topic [5],[31]. A comprehensive overview

is given in [64].

Other information theoretic vector quantizers directly optimize the mutual

information or strongly related the Kullback-Leibler-divergence. These ap-

proaches do not try to minimize the reconstruction error but reduce the di-

vergence between data and prototype density distributions [28] or maximizing

unconditional entropy [59]. Vector quantization algorithm directly derived from

information theoretic principles based on Rényi-entropies are intensively studied

in [38],[49],[22] also highlighting its connection to graph clustering and Mercer

kernel based learning [32].

5 Information theory based data visualization and shape

recognition

Data visualization is a challenging task to explore data and extract information

content. Mapping of complex data structures or high-dimensional data onto

the two-dimensional plane or the three-dimensional space preserving the rele-

vant information is of particular interest [?]. A good way is standard principal

component analysis or its nonlinear counterpart [?]. Another option are topo-

graphic maps like the above mentioned self-organizing map (SOM) or generative

topographic mapping (GTM) [8]. Compared to SOM, also the magnification

properties of GTM mapping are known relating them to information preserv-

ing mapping [7]. Structural visualization based on SOMs is recently published

and denoted as Exploration Machine (XOM) [67], which can be seen as variant

of multi-dimensional scaling (MDS) [20]. Both approaches use in original the

discrepancy between the pairwise data distances in the data space and in the

embedding space based on the Euclidean distances. Yet, also divergences as

dissimilarity measure in MDS is proposed [37].

Stochastic neighbor embedding (SNE) provides a principle alternative to
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MDS: here, the distributions the embedding space is under control such that

the mutual information is maximized, which is equivalent to minimizing the

Kullback-Leibler-divergence between them [29]. A more robust variant is t-

SNE, which uses a t-distribution instead of Gaussians in the original SNE [41].
A mathematical foundations of generalizations of t-SNE and SNE for arbitrary
divergences is given in [63]. Yet, Kullback-Leibler-divergence can also be plugged

into XOM [10],[11]. A generalization of these ideas leads to self-organized neigh-

bor embedding (SONE) [12],[9]

6 Conclusion

This introduction paper reviews some recent developments in information related

learning. Obviously, this paper can not be complete in any sense. However,

it highlights some interesting new details and ideas in the field of a rapidly

developing field. Information related learning is, thereby, a very general concept,

which makes less assumptions about data than many other machine learning

approaches and provides principled strategies based on fundamental cognizance

about nature. As we have seen, it comprises different methodologies implicitly

or explicitly making use of the concepts of information and entropy.
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