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Abstract. Biological organisms perceive and act in the world based on
spatiotemporal experiences and interpretations. However, artificial agents
consider mainly the spatial relationships that exist in the world, typically
ignoring its temporal aspects. In an attempt to direct research interest
towards the fundamental issue of time experiencing, the current work ex-
plores two temporally different versions of a robotic rule switching task.
An evolutionary process is employed to design a neural network controller
capable of accomplishing both versions of the task. The systematic explo-
ration of neural network dynamics revealed a self-organized time percep-
tion capacity in the agent’s cognitive system that significantly facilitates
the accomplishment of tasks, through modulation of the supplementary
behavioural and cognitive processes.

1 Introduction

Sensing the flow of time is fundamental for intelligent organisms [1]. Especially
for humans that live in large societies having complex daily schedules, time per-
ception is essential for almost every activity we engage in. Subjective time is
an intrinsic indicator of how long external events should last, often functioning
as an error signal leading to specific action selection. Despite the essential role
of time in natural cognition, current endeavours in developing intelligent robots
are by no means directed towards encompassing time perception in the systems’
repertoire of capacities. The majority of robotic research focuses on task accom-
plishment such as navigating to reach goals, or moving objects around, with only
superficial investigation of time perception issues (for example, tracking systems
monitor speed changes across time, but this is far from considering the flow of
time). The inability of artificial systems to experience the temporal character-
istics of events hinders their understanding about the real, dynamic world.

In order to explore how time perception is involved in artificial cognition,
the current study explores two time-differentiated versions of a behavioural-rule
switching task. In particular, a simulated robotic agent has to consider un-
predictably changing reward signals, in order to switch between response rules
choosing the one that is considered correct at a given time [2]. We investigate the
behaviour of the agent for a sequence of trials assessing its ability to successfully
switch among rules. We study two temporally different versions of the aforemen-
tioned task exploring how rule switching interacts with perceiving the temporal
characteristics of the given problem. In the first version, all trials have equal
predefined durations, while in the second version the temporal length of trials
is determined in a dynamical manner based on agent’s behaviour. We evolve
Continuous Time Recurrent Neural Network (CTRNN) controllers capable to
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accomplish both versions of the rule switching task. Subsequently, we study the
mechanisms self-organized in the CTRNN. We observe that the controller mon-
itors the temporal characteristics of the task, a process that plays an important
role in the rule following/switching.

In the following sections, we describe the experimental setup followed in the
present study, the obtained CTRNN results, and how the latter compare to the
time perception processes of the human brain.

2 Experimental Setup

The current study is an extension of our previous works [2, 3], addressing rule
switching in a mobile-robot interpretation of the classical Wisconsin Card Sort-
ing (WCS) task [4].
The Neural Network Controller. We use a CTRNN model [5] to investi-
gate the role of duration perception and how it interacts with rule switching.
Following our previous work [2] showing that bottleneck configurations are more
effective in rule switching tasks compared to fully connected CTRNNS, the cur-
rent work employs a bottlenecked network. Intuitively, the loose separation of
the network facilitates the development of low level and high level skills in the
corresponding parts of the CTRNN. The details of input-output connectivity
are similar to [3] and they are omitted here due to space limitations.
Mobile Robot Rule Switching Task. The investigated task is inspired by
the rat version of WCS, exploring rodents’ rule switching [6]. We assume that a
mobile robotic agent is located at the bottom of a T-maze environment (see Fig.
1). At the beginning of a trial, a light cue appears at either the left or the right
side of the robot. Depending on the light side, the robot has to move to the
end of the corridor, making a 90° turning choice towards the left or right. The
side of the light is linked to the choice of the robot according to two different
cue-response rules. The first is called Same-Side (SS) rule implying that the
robotic agent should turn left if the light source appeared at its left side, and it
should turn right if the light source appeared at its right side. The second rule
is named (OS), implying that robot should turn to the side opposite of the light.
The capacity of the agent to follow each rule is evaluated by testing sequences
of the above described trials. For example, assume that a human experimenter
selects rule SS and asks the agent to follow it for several trials. Based on the side
of the light cue, the experimenter provides reward to the side of the T-maze that
the robot should turn (see Fig. 1). Every time that the robot gives a correct
response, it reaches the target location driving to a reward area that indicates
it follows the right rule. At a random time (unknown to the robotic agent), the
experimenter changes the rule considered correct, positioning rewards according
to the OS rule. Thus, the robot that is not aware of this change will give an
incorrect response, being unable to get a reward. This is an indication that the
adopted rule is not correct anymore. The agent is necessary to discover this rule
change, switching its response strategy according to the new rule. This will make
the agent receiving rewards again, indicating that the correct rule is followed.
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Same Side (SS) Rule Opposite Side (OS) Rule

Fig. 1: A schematic representation of the response rules. The robot starts always
from the bottom of the T-maze. Light cues are shown as double circles. Target
locations are represented by X, while reward corresponds to the gray area.

At some later time the experimenter will switch the rule again, and so on. The
above described rule following/switching process is repeated for 10 times.
Trial Duration. In order to investigate artificial mechanisms of duration per-
ception, we have implemented two temporally different versions of the underlying
rule switching task. In particular, in the first version we let the controller to
dynamically specify the duration of trials (i.e. all trials end as soon as the robot
reaches the target location at a distance of 10 units). We call this version of rule
switching Dynamic Trial Duration (DTD). In the second version, all trials have
the same duration during the whole task (i.e. the trial ends after a predefined
number of steps, irrespective to the agent’s reaching of the target location). This
version is called Static Trial Duration (STD). In order to avoid the possibility
that the DTD timing will self-organize in an identical form with STD, we have
explicitly differentiated the two scenarios by letting the DTD last “at most 170
steps”, while the STD lasts “exactly 190 steps”.

Evolutionary Procedure. We use a Genetic Algorithm (GA) to explore how
rule switching capacity and duration perception self-organize in CTRNN dynam-
ics. In short, we use a population of artificial chromosomes encoding CTRNN
controllers (their synaptic weights and neural biases). Each candidate solution
encoding a complete CTRNN is tested on tasks examining the ability of the
network to switch between rules in both the DTD and the STD setup.

3 Results

We have evolved CTRNN controllers running ten different GA processes. Five
of the evolutionary procedures converged successfully configuring CTRNNs ca-
pable of rule switching. Interestingly, the results obtained from the statistically
independent evolutionary procedures exhibit common internal dynamics, which
are discussed below using as a working example one representative solution.
The performance of the agent’s rule switching during DTD and STD is
demonstrated in Fig. 2. During trials 1-4 the agent follows SS rule, success-
fully acquiring rewards. Next, in trial 5 the experimenter changes rule to OS.
The agent that is not aware of this change fails to accomplish reward for one trial
in the DTD case and for two consecutive trials in the STD case. In forthcoming
trials the agent successfully follows OS. The rule is changed again in trial 15,
where the agent is missing the reward for one trial in both the DTD and the
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Fig. 2: The response of the agent in 22 consecutive trials covering three phases,
for the case of DTD and STD setups. The robot initially follows SS rule, then
it switches to OS, and back to SS.

STD case. This time the agent switches quickly back to SS, receives a reward
in trial 16, and continues responding according to SS for the rest of the trials.

After investigating the internal dynamics of the controller among trials, we
observed much slower dynamics in the higher part of the bottlenecked CTRNN
compared to the fast fluctuation of the lower level neurons. This finding is
similar to [3], implying that the higher part of the controller is mainly involved
in encoding the rule that is currently adopted by the robot, while the lower part
is responsible for applying the rules considering also environmental interaction
issues (e.g. wall avoidance). In the following we restrict our discussion to the
higher level neurons of the CTRNN exploring how rule manipulation interacts
with time perception. In order to place activation difference between the DTD
and STD cases within a general and systematic framework, we have conducted
a Principal Component Analysis (PCA) on the activity of higher level neurons.

The first two principal components of higher level activity during DTD task
with the robot turning left or right following either OS or SS are shown in Fig.
3. Note that the agent has to memorize rules when passing from one trial to
the next. The value of principal components at the beginning and ending of
trials provide insight in the rule encoding approach. In Fig. 3 we can easily
observe that the second principal component (PC2) supports memorizing the
currently adopted rule because for OS trials PC2 starts and ends from relatively
low values, while for the case of SS trials, the same principal component starts
and ends from relatively high values. Thus, PC2 differentiates OS and SS by
tracking the currently adopted rule between consecutive trials.

Turning to the STD version of the task, the first two principal components
of higher level activity for all possible cases are depicted in Fig. 4. We can easily
observe that the two rules are now differentiated based on PC1. In particular,
for both the left and the right turnings of OS, PC1 starts and ends at rather
high values, while for the case of SS rule, PC1 starts and ends at low values.
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Fig. 3: The activity of the first two principal components in a set of multiple
DTD trials. Principal component 1 (PC1) is demonstrated with a solid line,
while principal component 2 (PC2) is demonstrated with a dotted line. Clearly,
rules SS and OS are separated based on the second principal component, PC2.

Overall, CTRNNs encode the temporal characteristics of tasks in the princi-
pal components of neural activity, a mechanism that plays an important role in
memorizing the rule that is currently adopted by the artificial agent.
Discussion. In the human brain, imaging studies propose that time perception
may emerge from the integration of interoceptive afferent activity (body sensa-
tions) in the insular cortex [7, 8], an area of the brain which is also strongly
involved in emotional awarenes and in complex decision making, therefore shar-
ing the same neural substrate with other behavioural and cognitive capacities.
Similarly, in our study the primitive time perception ability of CTRNN’s is in-
tegrated with the rule following/switching capacity.

Interestingly, there is an open neuroscience debate regarding the existence
or non-existence of two distinct neural mechanisms involved in processing sub-
second and supra-second time intervals [9]. Despite this is not the main topic of
the present study, the mechanism self-organized in our work may bridge the two
opponent arguments, suggesting that sub-second and supra-second mechanisms
may rely on different principal components of the same overall system, therefore
being partially but not fully segregated.

4 Conclusions

In the field of artificial cognitive systems, time perception remains a largely un-
explored issue. The current study shows that considering time may significantly
support artificial cognition. Our work is an early attempt towards a system-
atic exploration of the time perception capacity in the context of autonomous
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Fig. 4: The activity of the first two principal components in a set of multiple
STD trials. Principal component 1 (PC1) is demonstrated with a solid line,
while principal component 2 (PC2) is demonstrated with a dotted line. Clearly,
rules SS and OS are now separated based on the first principal component, PC1.

intelligent systems. In the future, we plan to explore additional aspects of time
perception, focusing on duration estimation and duration calculus, considering
the neurocognitive mechanisms underlying human skills in the temporal domain.
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