
Sparsity Issues in Self-Organizing-Maps for Structures
Markus Hagenbuchner1, Giovanni Da San Martino2, Ah Chung Tsoi3

and Alessandro Sperduti2 ∗

1- School of Computer Science and Software Engineering
University of Wollongong - Australia

2- Department of Pure and Applied Mathematics
University of Padova - Italy

3- Faculty of Information Technology
Macau University of Science and Technology - Macau SAR, China

Abstract. Recent developments with Self-Organizing Maps (SOMs) produced
methods capable of clustering graph structured data onto a fixed dimensional dis-
play space. These methods have been applied successfully to a number of bench-
mark problems and produced state–of–the–art results. This paper discusses a limi-
tation of the most powerful version of these SOMs, known as probability measure
graph SOMs (PMGraphSOMs), viz., the sparsity induced by processing a large
number of small graphs, which prevents a successful application of PMGraphSOM
to such problems. An approach using the idea of compactifying the generated state
space to address this sparsity problem is proposed. An application to an estab-
lished benchmark problem, viz., the Mutag dataset in toxicology will show that the
proposed method is effective when dealing with a large number of small graphs.
Hence, this work fills a gap between the processing of a number of small graphs,
and the processing of densely connected graphs using PMGraphSOMs.

1 Introduction
Self-Organizing Maps (SOMs) are one of the best known machine learning methods [1].
The SOMs have been very successful in tasks requiring the clustering or projection of
high–dimensional data onto low dimensional display space. Some of the reasons of
its success may be attributed to the fact that the learning algorithm is scalable (growing
linearly with the size of a learning problem), it does not require ground truth information
during the training phase, and the result is a topology preserving mapping which allows
a direct visualization of the high dimensional data [1].

In its original form, the SOM was developed as an unsupervised clustering method
for vectorial data [1]. Over time, the SOM has gradually been enhanced to allow the
clustering of data sequences [1], ordered tree structured data [2], and directed or undi-
rected graphs [3]. More recent work enabled the SOM to cluster generic graphs [4, 5, 6].
The Probability Measure Graph-SOM (PMGraphSOM) is arguably the most powerful
SOM since it is a scalable approach capable of dealing with datasets as simple as a set
of vectors and as complex as a set of one or more graphs which may contain directed or
undirected links (or a mixture of both), cyclic structures, nodes that may be labeled by
a numeric value, nodes featuring an arbitrary number of in- or out-degrees, etc [5]. In
fact, the PMGraphSOM has been applied to a number of benchmark problems and has
achieved state–of–the–art performances [4, 5, 7, 8].
∗The work presented in this paper has been supported by the Australian Research Council in form of a

Discovery Project grant (DP0774168) and a Linkage International Awards Grant (LX0882106).

35

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

However, a shortcoming of the PMGraphSOM was detected when it was used to
cluster sparse graphs. Here we consider a graph is “sparse” if the ratio between the
number of nodes and the number of links is small. As it will be discussed in section 3,
the PMGraphSOM internally represents the neighbourhood of a node i by a vector of
the same size of the PMGraphSOM map. The number of non-zero elements of such a
vector is proportional to the number of neighbours of i. When the size of the PMGraph-
SOM map is much larger than the out-degree of a node, which is verified in almost any
practical application, the vector representing the node i tends to be sparse. This, in turn,
increases the probability for any pair of input nodes to be considered orthogonal by the
PMGraphSOM, thus preventing an effective learning process. In fact, the more sparse
the input is, the more does the PMGraphSOM reduce itself to just memorizing the input
data (rather than clustering them together). This paper will analyse the sparsity problem
of the PMGraphSOM, and propose an approach to overcome such situations.

This paper is organized as follows: The PMGraphSOM is described in Section 2.
The enhancement allowing a deployment of PMGraphSOM to accept sparse graph in-
puts is proposed in Section 3. Experiments and a comparison with results obtained by
other researchers is offered in Section 4, and some conclusions are drawn in Section 5.

2 The PMGraphSOM
The PMGraphSOM maintains many similarities with Kohonen’s original SOM: it con-
sists of an n–dimensional display space 1, the display space is formed by a set of code-
books which are arranged as a regular grid, and the training algorithm consists of a
two–step procedure which processes vectorial inputs. The differences are: PMGraph-
SOM processes nodes in a graph and the input vectors are formed dynamically in order
to account for the dependencies of a node on other nodes. The PMGraphSOM allows
the processing of graphs the nodes of which are labeled by a numeric vector. The input
xi associated with the i-th node in a graph is formed by concatenating any existing label
li that may be attached to the i-th node with a state vector Mne[i]. Mne[i] encodes the
information about the neighbors directly connected to it 2. Let us first consider the train-
ing algorithm of a PMGraphSOM to explain the formation of Mne[i]. Given a set of
codebook vectors organized on a discrete two-dimensional grid of size x1 × x2. There
is one codebook vector for each grid point and the dimension of all codebook vectors
is the same as the dimension of the input vectors x. The codebook vectors are initial-
ized with random values. The codebook vectors are updated according to the following
two–step training procedure:

1. Competitive step: Randomly select a node i from any graph in the training dataset,
form the input vector xi = (li,Mne[i]), then find the best matching codebook
value using:

r = arg min
j



µ1‖xi −mj‖2 + µ2

x1×x2∑

`=1

∑

k∈ne[`]

1√
2πσ(t)

exp
{
−‖c` − ck‖2

2σ(t)2

}


(1)
1 Without loss of generality, this paper will assume that n = 2.
2A node is said to be a direct neighbor if a link exists to a given node.

36

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

where c` denotes the coordinates of the neuron in the node which is connected
to the current node n. σ(t) is a monotonically decreasing function in t. The
constants µi, i = 1, 2 are designed to moderate the effect of the influence of the
current node or those in the neighborhood of the current node n. The winning
codebook mr is said to be activated by the current input.

2. Cooperative step: All codebook vectors are updated by ∆ms = α(t)f(∆sr)(ms−
xi), where α(t) is a learning rate which decreases to zero with time t, f(∆sr is
said to be a neighborhood function which is commonly defined as f(∆sr) =
exp(−‖cs − cr)‖2/2σ(t)2), cs is the coordinate of the s-th codebook in the
map, cr is the coordinate of the winning codebook, σ is a parameter called the
neighborhood radius which decreases to 1 with time t.

These two steps are repeated for a given number of training iterations. Note that when
processing directed graphs, the input vector is formed by setting xi = (li,Mpa[i],Mch[i]),
where pa[i] refers to the parent nodes of node i, and ch[i] the child nodes of the same
node respectively. The algorithm produces an activation for each presented node. This
activation is the network’s response to the given input. Once an activation is computed
for each node in a training dataset, this information is used to initialize the state vector
M. In other words, M provides information about the mappings of a node’s neighbors.
M forms a part of an input vector, and the PMGraphSOM encodes a node’s label as well
as the context within which it occurs in a graph. Applied iteratively, and to all nodes, the
context of a node is eventually passed to all other (connected) nodes in a graph. Note
that this procedure allows the PMGraphSOM to encode any number of nodes which
may or may not be connected by links. This means that the PMGraphSOM considers
a set of graphs as a single graph consisting of disconnected sub–graphs. To account
for the Euclidean similarity measure used, the activations of a node’s neighbors are en-
coded by the state vector as follows: Mi = 1/(σ(t)

√
2π) · exp(−‖cs−cr)‖2/2σ(t)2),

where Mi is the i-th element of the state vector. This means that the dimension of M is
x1 × x2 (the number of codebooks on the map). The advantage of this approach is that
the dimension of the input vectors becomes independent of the degree of a node. How-
ever, this can have a profound effect when processing data consisting of many small
graphs.

3 Self-Organizing Maps for Sparse Graphs
In general, the more complex the learning problem is, the larger the map needs to be,
and the dimension of the state vector grows with the size of the map. This is fine
for learning problems featuring graphs which are richly connected. A problem arises
when attempting to encode a large set of small graphs. In such cases, although the
dimensionality of M is large, since each node has only few neighbors, M represents
the encoding of only a few nodes. Moreover, during training, the neighborhood radius
σ(t) decreases to 1, and hence the elements in M become increasingly sparse, until
towards the end of the training process there are only n[ne] non-zero elements in M,
where n[ne] is the number of neighbors of a node. This means that M becomes very
sparse. The problem with this is that the Euclidean distance measure used can no longer
differentiate between the mappings of neighbors of two different nodes. The same
problem existed in GraphSOM, a predecessor of PMGraphSOM which was shown to

37

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

have the afore–mentioned deficiency [9]. A possible approach for the elimination of
the sparse graph problem lies in the explicit listing of coordinate values for all of a
node’s neighbors. The approach is similar to the one taken by self–organizing map
for structured data (SOM-SD) [2]. However, the SOM-SD can only process directed
ordered graphs. This is because the SOM-SD lists the coordinate values in order of
the occurrence of the offsprings of a node (the first coordinate values correspond to the
first offspring of a node, the second coordinate values to the second offspring, and so
on). Thus, the order of these coordinate values is very important since it could limit
the capability of a PMGraphSOM to process unordered and undirected graphs. Since
the aim is to maintain similarities between (sub–)graphs rather than to maintain any
order that may exist in a graph, we propose to sort the coordinate values prior to further
processing. Thus, the state vector M in Eq(1) becomes a sorted list of coordinate
values. This approach is valid for the following reasons: (a) the dimension of M gives
the maximum number of neighbors of any node (the degree of a graph). Since we are
dealing with sparse graphs, the degree is either known or can be estimated. Padding
with a set of illegal coordinate values, such as (-1,-1), can be used for nodes with less
than the maximum number of neighbors. (b) a PMGraphSOM is known to map similar
sub–structures to nearby regions on the map, and hence, the sorting of coordinate values
ensures that the mapping of similar sub-structures (rooted by the neighbors of a node)
is listed in order of similarity. (c) the dimension of the new state vector M is small
since we deal with sparse graphs. When dealing with densely connected graphs we can
fall back on using the original PMGraphSOM approach [5] instead.

The method presented in this section requires the sorting of the state vector. Since
the size of the state vector depends on the connectivity of a graph, and since good
sorting algorithms have a linear-logarithmic complexity, the proposed approach does
not scale very well with the level of connectivity of a graph. However, in practice, this
is not an issue since we assume to deal with sparse graphs (which contain only few
links). In the following, we will refer to a PMGraphSOM with the proposed compact
representation of state information as compact PMGraphSOM.

4 Experiments and Comparisons
The proposed approach is applied to a challenging benchmark problem consisting of a
set of chemical molecules, viz. the Mutag benchmark problem [10]. The Mutag prob-
lem consists of a classification task; currently the best known supervised approach per-
forms in the region of 90% accuracy. We will use this dataset since it features molecule
structures which can readily be represented as graphs, and since the number of con-
nections is limited. Due to the complexity of the learning problem, when applying
a Self-Organizing Map algorithm, this would normally require a larger display space.
Hence, the Mutag dataset is ideally suited to illustrate the sparse graph problem of PM-
GraphSOM and the effectiveness of the proposed approach. The Mutag dataset consists
of a total of 3, 371 nodes in 188 graphs. To reflect the well known properties of atoms,
the maximum number of connections (the degree) for any one node in the graph is 4.

Several maps were trained by varying the µ weight values, learning rate, network
size, and neighborhood radius. We kept the number of training iterations constant at
100, and used a hexagonal neighborhood relationship for all experiments. The obser-
vations made were that the compact PMGraphSOM significantly improved the diversi-

38

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70

Fig. 1: Mapping of the nodes in the mutag dataset using PMGraphSOM (left), and by
using the compact state representation (right).

(graph 65) (graph 169) (graph 160) (graph 159) (graph 164)

Fig. 2: Three graphs rooted by the gray node as they were found mapped at the lower
left corner of the map (left), and two graphs (rooted by the gray node) which were
mapped at a distant location in the upper right corner of the same map.

fication of the mappings, and hence, resulted in a considerably improved network uti-
lization. Figure 1 provides a visualization of a typical observation for a network of size
76× 48. We undertook two approaches in order to obtain a deeper insight into whether
the improved diversification actually resulted in useful mappings. First, we used the
target labels that were available with this dataset to compute the classification perfor-
mance of these SOMs. For the maps shown in Figure 1, the classification performance
is 75.38% for the PMGraphSOM, and 84.10% for the compact PMGraphSOM. This is
a very respectable result given that the SOMs were trained unsupervised, and provides
a good indication on the effectiveness of the proposed method. Secondly, we looked at
nodes that were mapped nearby on the map generated by the compact PMGraphSOM.
An example of the observation made is depicted in Figure 2. The three leftmost graphs
shown in Figure 2 were mapped at coordinates (10,0), (11,0), and (12,0) respectively.
These coordinates refer to codebooks located at the lower left corner of the map which
were activated by at least one node. The gray colored node is the node that activated
the codebook. It can be observed that the three nodes are located in a very similar con-
text within the respective graph. In contrast the nodes and associated graph mapped
at the coordinate (70,47), (71,47) near the upper right corner of the map are shown on
the righthand side of Figure 2. Again, it can be observed that the nodes appear in a
very similar context within the respective graphs. The figure also made it clear that the
nodes mapped in different regions of the map occur in a very different context. This

39

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

visually confirms that the compact PMGraphSOM creates useful topology preserving
mapping. Moreover, we also observed that the training times were generally shorter for
the compact PMGraphSOM. This is simply due to the fact that the input dimension for
the PMGraphSOM is dominated by the 76 × 48-dimensional state vector, whereas the
state vector of the compact PMGraphSOM was just 4× 2-dimensional.

5 Conclusions
In this paper, we have presented one way to overcome an issue when we apply PM-
GraphSOM to a large number of small graphs. This approach is applied to a benchmark
problem of classification in a toxicology dataset: the Mutag dataset. It is found that the
proposed approach is effective in dealing with sparse graphs by improving network uti-
lization and the quality of the mappings. Future work includes a formal investigation
of the sparsity problem. Such investigation would identify the conditions under which
the proposed compact PMGraphSOM is superior to the PMGraphSOM. Further future
work includes the extension of the compact PMGraphSOM to be trained using a su-
pervised learning approach. By providing the neural network architecture with more
informative feedback through a target value, hopefully the supervised version of the
compact PMGraphSOM will achieve results which are comparable, if not better than
other approaches to tackling this benchmark problem.

References
[1] T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information Sciences. Springer,

Berlin, Heidelberg, 1995.

[2] M. Hagenbuchner, A. Sperduti, and A.C. Tsoi. A self-organizing map for adaptive processing of struc-
tured data. IEEE Transactions on Neural Networks, 14(3):491–505, May 2003.

[3] M. Hagenbuchner, A. Sperduti, and A.C. Tsoi. Contextual processing of graphs using self-organizing
maps. In European symposium on Artificial Neural Networks, 27 - 29 April 2005.

[4] L. Di Noi, M. Hagenbuchner, F. Scarselli, and A. C. Tsoi. Web spam detection by probability mapping
graphsoms and graph neural networks. In Konstantinos Diamantaras, Wlodek Duch, and Lazaros Iliadis,
editors, Artificial Neural Networks - ICANN 2010, volume 6353 of Lecture Notes in Computer Science,
pages 372–381. Springer Berlin / Heidelberg, 15-18 September 2010.

[5] S. Zhang, M. Hagenbuchner, A.C. Tsoi, and A. Sperduti. Self organizing maps for the clustering of
large sets of labeled graphs. In N. Fuhr et al., editor, LNCS 4862, Lecture Notes in Computer Science,
pages 207–221, Berlin, 2009. Springer-Verlag Berlin Heidelberg.

[6] S. Günter and H. Bunke. Self-organizing map for clustering in the graph domain. Pattern Recognition
Letters, 23(4):405–417, 2002.

[7] M. Kc, M. Hagenbuchner, A.C. Tsoi, F. Scarselli, M. Gori, and S. Sperduti. Xml document mining
using contextual self-organizing maps for structures. In Lecture Notes in Computer Science, volume
4518, pages 510–524. Springer-Verlag Berlin Heidelberg, 2007.

[8] M. Hagenbuchner, A. Sperduti, A.C. Tsoi, F. Trentini, F. Scarselli, and M. Gori. Clustering xml docu-
ments using self-organizing maps for structures. In N. Fuhr et al., editor, LNCS 3977, Lecture Notes in
Computer Science, pages pp. 481–496. Springer-Verlag Berlin Heidelberg, 2006.

[9] M. Hagenbuchner, S. Zhang, A.C. Tsoi, and A. Sperduti. Projection of undirected and non-positional
graphs using self organizing maps. In European Symposium on Artificial Neural Networks - Advances
in Computational Intelligence and Learning, pages 559–564, Bruges, Belgium, 2009.

[10] A.K. Debnath, R.L. Lopez de Compadre, G. Debnath, A.J. Shusterman, and C. Hansch. Structure-
activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with
molecular orbital energies and hydrophobicity. J. Med. Chem., 34:786–797, 1991.

40

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

