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Abstract. In this paper we address the problem of incorporating prior
knowledge, in the form of causal relations, in causal models. Prior ap-
proaches mostly consider knowledge about the presence or absence of edges
in the model. We use the formalism of Maximal Ancestral Graphs (MAGs)
and adapt cSAT+ to solve this problem, an algorithm for reasoning with
datasets defined over different variable sets.

1 Introduction

Scientific studies and experiments produce a wealth of knowledge. Often this
knowledge is in the form that a quantity A is associated/not associated with B,
or if the study is experimental, that A is causing/not causing B. Presumably,
this type of knowledge could be helpful when performing a causal analysis on
a different dataset. Existing attempts to incorporate prior knowledge when
learning causal models assume knowledge about the existence or absence of edges
in the model (see [1] for a detailed review of existing methods). The edges in most
graphical models denote associations or causal relations that are not mediated
by any other observed variable in the model, i.e., a direct causal relation in the
context of a set of variables V. However, when an experiment suggests that
X causes Y this relation refers to any variable context; it denotes a possibly
indirect causal relation in the context of V. To impose the correct semantics
of an identified relation “X causes Y ” one should impose the constraint on the
model that there exists a directed causal path from X to Y (X → · · · → Y ).

In this paper, we examine a constraint-based approach to incorporating prior
knowledge in the form typically produced by studies, and in a way that retains
the semantics of the discoveries. We use the framework of Maximal Ancestral
Graphs (MAGs), and representatives for MAG equivalence classes, Partially
Oriented Ancestral Graphs. These models have the desired property that can
represent marginal distributions with possible latent variables and therefore do
not require causal sufficiency [2]. We reduce the problem to combining causal
graphs from different overlapping variable sets and employ an existing algorithm
(cSAT+) to solve it. The algorithm is sound and complete and will perform all
possible orientations that are unique in all models consistent with both the
data and the prior knowledge. We demonstrate that complicated types of prior
knowledge can be used to improve the orientations of existing models, under the
assumption of correctness of the models and reliability of the prior knowledge.
We include a discussion of the limitation of current formalisms such as MAGs to
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capture interesting types of causal knowledge, as well as open questions regarding
this problem.

2 Background

We briefly review some background knowledge to the problem, assuming the
reader’s familiarity with causal modeling. We are interested in situations where
latent confounders are possible, therefore we use Maximal Ancestral Graphs [3].
Maximal Ancestral graphs are graphs with two types of edges, directed → and
bidirected ↔. A directed edge A→ B denotes that A is a causal ancestor of B
and more over, the statistical dependency between the two variables is “direct”,
i.e., it does not disappear conditioned on any other subset of variables in the
model. A bidirected edge connects two variables if the two are correlated but
none is an ancestor of the other (the two have a latent common cause). Given
a MAG over a set of variables, the independencies that hold among the model
variables can be obtained by the criterion of m-separation. Every missing edge
in a MAG corresponds to a conditional independence , i.e if X is not adjacent
to Y in MAG M over variables O, X is independent of Y condition to a set
Z ⊆ O \ {X,Y }. MAGs are closed under marginalization: If an independence
model is represented by a MAG, any marginal distribution of the model can also
be represented by a MAG.

However, an independence model does not uniquely define a MAG. It defines
an Equivalence Class of MAGs that share the same edges and some orientations.
Such MAGs are called Markov Equivalent and can be represented by a graph
called Partially Oriented Ancestral Graph (PAG). PAGs have three types of
endpoints: Arrowheads “>”, tails “-” and circles “◦”. A PAG has the same
adjacencies as any member of the equivalence class, and every non-circle endpoint
is invariant in any member of the equivalence class. Circle endpoints correspond
to uncertainties; the definitions of paths are extended with the prefix possible to
denote that there is a configuration of the uncertainties in the path rendering the
path ancestral, inducing or m-connecting. FCI [2] is an asymptotically correct
algorithm which outputs a PAG over a set of variables V when given access to
an independence model over V.

The causal SAT+ (cSAT+) algorithm, which in this paper we modify and use
to incorporate prior knowledge, is an algorithm designed to combine PAGs over
overlapping sets of variables. First, it assumes that a single causal mechanism
gives rise to the marginal PAGs {Pi}Ki=1 observed. Each possible edge and edge-
endpoint of this unknown MAG is represented with a propositional variable.
The observed dependencies and independencies in all PAGs are converted to
constraints among these propositional variables. The result is an instance of
the SAT problem. Each and every solution to the SAT problem corresponds to
a MAG M consistent with all input PAGs {Pi}Ki=1. The independence models
implied by the PAGs are assumed to be correct. The MAGs that are solutions to
the problem form an equivalence class of statistically indistinguishable models.
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3 Problem definition

In this section we describe the types of prior knowledge we would like to incor-
porate in our models, based on our view of how scientific knowledge is produced
and published.

1. X,Y are associated (X - - Y ) / X,Y are not associated (X - � - Y )

2. X causes Y (X ��� Y ) / X does not cause Y (X ���� Y )

Knowledge of the type X - - Y and X - � - Y is usually produced by typical
observational studies, where a set of variables are measured on a population and
an association is found or not (e.g., a doctor trying to identify risk factors for a
disease). Knowledge of the type X ��� Y or X ���� Y stems from experimental
studies (Randomized Control Trials), or causal analysis of observational data
(e.g. with Causal Networks). Naturally, knowledge may also be derived from
domain experts.

Notice that, X ��� Y does not semantically correspond to an edge X → Y
in a causal model (Causal Bayesian Network or MAG). The former means that
X is causing Y without reference to a specific variable context; the latter means
that X is causing Y directly (i.e., no other variable is mediating the causation)
in the specific context of all other variables in the model. Hence, a direct edge
X → Y in a model, may disappear if more variables are added to the model
making the causal relation indirect. The correct interpretation is that X ��� Y
(X ���� Y ) implies that a directed path from X to Y should (should not) exist
in any causal model involving the two variables. Similarly, X - - Y (X - � - Y )
implies that an m-connecting path exists (does not exist) in the model.

In this paper we attempt to incorporate such knowledge into a given model
in the form of a PAG P over variables V. As a first step towards this direction
in this paper, we assume that the PAG contains no errors (i.e., we have perfect
knowledge of conditional independencies among the variables in P) and reliabil-
ity of the prior knowledge. Given this assumption, the PAG already perfectly
encodes the dependencies and independencies among variables in V and thus
knowledge provided in the form X - - Y or X - � - Y can only re-enforce existing
knowledge or conflict with it. We thus now focus on incorporating the second
type of prior knowledge.

Let us first consider how the skeleton of P may be affected when we con-
sider knowledge K of the form X ��� Y or X ���� Y . As already mentioned
the PAG already encodes the conditional and unconditional dependencies and
independencies among the variables in V. Edges in a PAG are removed only due
to identified (conditional or unconditional) independencies. Relations X ��� Y
and X ���� Y do not provide new independencies. Thus, considering knowledge
K will not affect the skeleton of the PAG P . Now, let us turn our attention to
the end-point markings (tails “-”, arrowheads “>”, and circles “◦”) of the edges
in P . Given that we assume no structural errors in inducing P , knowledge K
may only reduce our structural uncertainty of the model. Thus, it may orient
certain end-points and change them from “◦” to either tails “-” or arrowheads
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“>”; however, K may not change already oriented end-points. Finally, we are in-
terested in making all possible orientations and removing as many uncertainties
(“◦” marks) as possible:

Problem 1. Given a PAG P over variables V and a set of prior knowledge
{K}Mi=1, where Ki is of the form X ��� Y or X ���� Y , X,Y ∈ V induce a PAG

P ′
, consistent with both P and K and a minimal number of “◦” markings.

4 Proposed Solution using cSAT+

To solve Problem 1, we transform the prior knowledge into graph path con-
straints, using the semantics of Ancestral Graphs and logical constraints. The
proposed algorithm is shown in Algorithm Modified cSAT+, which is a mod-
ification of the more general cSAT+ algorithm [4] for this special case. The
algorithm converts the problem to a SAT problem.

First, the algorithm defines the propositional variables edge(X,Y ) for every
pair X and Y , indicating the presence or absence of an edge betweenX and Y ; it
also defines variables arrowhead(X,Y ) denoting that an edge between X and Y
is directed from X to Y . Recall that, the truth assignment to the edge variables
and the already oriented arrowhead variables is fixed, thus the decision variables
in our problem is the set of arrowhead predicates corresponding to “◦” markings
in the input PAG. We also define the derived predicate ancestor(X,Y ) denoting
that there is a directed path from X to Y to facilitate notation; the details of the
definition are in [5]. The truth status of ancestor is determined by the primitive
variables edge and arrowhead. We can now express prior knowledge as boolean
constraints with the following rules:

1. (Rule 1) If Ki = X ��� Y

(edge(X,Y )⇒ arrowhead(X,Y ) ∧ ¬arrowhead(Y,X))∧
(¬edge(X,Y )⇒ ancestor(X,Y ))

2. (Rule 2) If Ki = X ���� Y

(¬ancestor(X,Y ))

The SAT instance (Φc) is initialized with constraints created by the
PagConstraints function. This function converts the PAG to constraints on
the propositional variables: existence/absence of edges, initial edge orientations,
definite non colliders, every edge has to have an arrow, no directed/ almost
directed cycles. In Line 3, for each piece of prior knowledgeX ��� Y or X ���� Y
a constraint is appended to the current SAT formula.

The generated constraints include all the graph path constraints imposed by
both the PAG and the prior knowledge. In the final step, we query the possible
configurations of every unoriented endpoint, making all necessary orientations.
Extra orientations will be done only if they are present in all possible model con-
figurations resulting from the prior knowledge. If this is not the case, additional
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Function Modified cSAT+( P , {Ki}Mi=1)

1 Φc ← PagConstraints(P);
2 for all Ki do
3 Φc ← Φc ∧ rule1 or Φc ← Φc ∧ rule2, depending on the type of Ki;

4 for every unoriented endpoint X ∗ · · · ◦ Y in P do
5 if Φc ∧ arrowhead(X,Y ) is not satisfiable then
6 Orient X out of Y

7 else if Φc ∧ ¬arrowhead(X,Y ) is not satisfiable then
8 Orient X into Y

9 return P ;

knowledge cannot be incorporated in the PAG in a way that readily illustrates
the information. An example for a simple scenario is shown in Figure 1.

PAGs are focused on representing independence models (sets of conditional
independencies among the variables), instead of focusing on representing the
causal relations. In some cases, it is impossible to semantically correctly rep-
resent both using PAGs: one has to either represent independencies that cor-
respond to the m-separation criterion, or direct causal relations. For example,
consider the causal structure A ← B ← C, A and B having a hidden common
cause L. The PAG representing the structure when measuring only A,B,C is
A◦−◦B◦−◦C, A◦−◦C. The edge A◦−◦C exists because it cannot be removed
conditioning on B only (it opens the path C → B ← L → A because B is a
collider on that path). Now assume that prior knowledge is available dictating
that in the context of variables A,B,C there is no direct causal relation between
variables A and C. One cannot incorporate this information in the PAG over
variables A,B,C without altering the semantics of the graph in terms of inde-
pendencies. Therefore, PAGs are not able to fully capture the existence/absence
of causal relations, so other graphical models have to be defined to include cases
like the above one.

5 Conclusions

We present a sound and complete algorithm that, assuming lack of statistical
errors, incorporates causal prior knowledge over pairs of variables in a PAG over
an overset of these pairs. The output of the algorithm is still a PAG, in terms
of implied conditional independencies, but may represent configurations incon-
sistent with the prior knowledge. In addition, the complexity of the problem
is not proved, and therefore algorithms of lower complexity may be possible.
However, the algorithm introduces prior knowledge in a novel manner, as it does
not constraint the graph structure to contain specific causal arcs. Instead, prior
knowledge is included in the form of existence or absence of causal paths, which
in our opinion corresponds to the natural way of knowledge production in sci-
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Fig. 1: An example of the modified cSAT+ algorithm. (a) The underlying
causal structure. (b) The PAG representing the structure. (c) Prior knowledge:
C is causing B. (d) Prior Knowledge: A is causing D. (e) The resulting graph by
running Modified cSAT+. The dashed edges in (c) and (d) show that the causal
relation is not necessarily direct, i.e. there is a causing path. First, there has to
be a causal path from C to B. The only possible directed path is C◦−◦A◦−◦B.
The result is C → A→ B. To satisfy the second constraint A ◦−◦B◦ → D has
to be oriented as A→ B → D. Finally, C◦ → D has to be changed to C → D,
because the former would result in an almost directed cycle, which is forbidden
in MAGs.

entific studies. In addition, the SAT instance producec by the algorithm can be
updated with novel information when available, or augmented with queries to
answer specific questions of interest.
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