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Abstract. The Maximal Discrepancy and the Rademacher Complexity
are powerful statistical tools that can be exploited to obtain reliable, albeit
not tight, upper bounds of the generalization error of a classifier. We
study the different behavior of the two methods when applied to linear
classifiers and suggest a practical procedure to tighten the bounds. The
resulting generalization estimation can be succesfully used for classifier
model selection.

1 Introduction

When targeting small–sample classification problems, where the cardinality of
the training set is very small, typical hold–out techniques, like Cross Validation
[1], can be unreliable [2]. These methods, in fact, waste some data for estimating
the classification error by building a separate test set, so further reducing the size
of the training set and the reliability of the classifier itself. In–sample techniques,
instead, use the entire learning set both for training the classifier and estimating
its generalization error [3, 4, 5, 6], so that their use in the small sample setting is
very appealing. In addition, this estimation can also be used for model selection
purposes, when the learning procedure requires the tuning of additional hyper–
parameters. Hold–out techniques, instead, require to resort to nested procedures,
which remove even more data from the training set to build both a validation set,
for model selection purposes and a test set, for error estimation of the selected
classifier.

Unfortunately, in–sample techniques are seldomly used in practice because
their application to state–of–the–art classification algorithms, like the Support
Vector Machine [3], is not trivial. Recently, however, some effective approaches
have been proposed [7, 8, 9], which make them competitive with hold–out meth-
ods. The two best–known in–sample techniques are the Maximal Discrepancy
(MD) [5] and the Rademacher Complexity (RC) [6]. Our purpose is to verify if
and under which conditions MD outperforms RC, or vice versa, in estimating
the true error of the classifier. As the estimation of the error provided by in–
sample techniques is sometimes too loose to be of any practical use, we propose
an heuristic procedure for tightening the bounds, which exploits some recent
results [10]. A positive outcome of this procedure is to improve the applicability
of the MD and RC methods to the model selection of classifiers.
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2 Classification and error estimation: Maximal Discrep-
ancy and Rademacher Complexity

Let us consider a set X of n i.i.d. patterns (xi, yi), with xi ∈ d and yi ∈ Y =
{±1}, sampled from a distribution P(x, y). Given a linear classifier f(x) =
w · x + b, f : d → Yf ⊆ , we can easily compute its empirical error
L̂n(f) = 1

n

∑n
i=1 �(f(xi), yi) on the set X, where �(·, ·) is a loss function. Our

objective is to find a good and reliable estimation of the generalization error
L(f) = (x,y) � (f(xi), yi), which cannot be directly computed as P(x, y) is
unknown. The empirical error is of little help in this respect because it is
well-known that L̂n(f) usually underestimates L(f). In particular, the func-
tion f∗ = arg minf∈F L̂n(f), which minimizes the empirical error, is affected
by a generalization bias (L(f∗) − L̂n(f∗)). However, the generalization bias of
a classifier can be studied by considering its supremum respect to the class of
functions F , supf∈F [L(f) − L̂n(f)], which can be analyzed through MD or RC
approaches [5]. The first one can be computed by shuffling and splitting the
dataset in two halves:

M̂D(F) = max
f∈F

(
L̂

(1)
n
2

(f) − L̂
(2)
n
2

(f)
)

(1)

where L̂
(1)
n
2

(f) = 2
n

∑n
2
i=1 � (f(xi), yi) and L̂

(2)
n
2

(f) = 2
n

∑n
i= n

2 +1 � (f(xi), yi). Al-
ternatively, RC [6] can be computed from the training set by randomly re-
assigning the labels of the patterns:

R̂C(F) = Eσ sup
f∈F

2
n

n∑
i=1

σi�(f(xi), yi) (2)

where σi ∈ {−1,+1} with P(σi = +1) = P(σi = −1) = 1/2. Based on the
previous quantities, it is then possible to prove the two following bounds for
L(f) [5], which hold with probability (1 − δ):

L(f) ≤ LMD(f) = L̂n(f) +
1
m

m∑
i=1

M̂D
(i)

(F) + 3

√
log 2

δ

2n
(3)

L(f) ≤ LRC(f) = L̂n(f) + R̂C(F) + 3

√
log 2

δ

2n
. (4)

Note that, in our formulation, the value of Eq. (3) is computed by repeating the
procedure m times, m ≤ (

n
n/2

)
, so to avoid possible “unlucky” splittings [8].

3 Maximal Discrepancy Vs. Rademacher Complexity

To the best knowledge of the authors, it was never established if the MD outper-
forms the RC one or vice versa. In other words, it is not known which approach
produces the tightest bound. We will show that the two methods complement
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each other, in the sense that they provide different results, depending on the
difficulty of the training problem.

In order to better understand their behavior, we build two artificial prob-
lems that represent two extreme cases: the first one is a trivial linearly sep-
arable problem, while the second one consists of two completely overlapped
classes. For simplicity, the artificial problem makes use of mono-dimensional
datasets: the results, as described in the following sections, are confirmed with
high-dimensional datasets as well. All the samples are centered in ±1: the prob-
ability function generating the data is such that P(x = +1) = P(x = −1) = 1/2
and P(x �= ±1) = 0. The two artificial sets Xa1,Xa2, are depicted in Fig. 1:

1. the patterns of Xa1 are such that (xi, yi)a1 = (+1,+1) if i ∈ [1, n/2], and
(xi, yi)a1 = (−1,−1) otherwise;

2. the patterns of Xa2 are such that: (xi, yi)a2 = (+1,+1) if i ∈ [1, n/4],
(xi, yi)a2 = (+1,−1) if i ∈ [n/4 + 1, n/2], (xi, yi)a2 = (−1,+1) if i ∈
n/2 + 1, 3n/4], and (xi, yi)a2 = (−1,−1) if i ∈ [3n/4 + 1, n].

(a) Xa1 (b) Xa2

Fig. 1: The artificial datasets used for comparing MD and RC.

We consider the hard loss function �H (f(xi), yi) = 1 {yif(xi)}, which ex-
ploits the indicator function 1(·, ·), so that the optimal classifier f∗ is selected
according to the empirical error. In fact we can take into account only four
possible classifiers: (i) f(x) = +1; (ii) f(x) = +x; (iii) f(x) = −x; and (iv)
f(x) = −1. By considering all the possible

(
n

n/2

)
shufflings in Eq. (3) and all

the possible 2n combinations of labels in Eq. (4), we can precisely compare the
MD-based and RC-based bounds.

Table 1 shows the value of the empirical error, which also represents the best
misclassification rate for the datasets (i.e. L(f) = L̂n(f∗)), and the error esti-
mations LMD(f) and LRC(f), computed using Eqns. (3) and (4), respectively.
The term depending on δ is omitted, as it is constant, once n is fixed. The
value of R̂C(F) does not depend on the distribution P(y|x), as predicted by
theory (Eq. (2)): thus, the same error is obtained for the two artificial sets and
the estimation LRC(f) outperforms the MD-based bound in the case of highly
overlapped classes (i.e. on Xa2). On the contrary, the performance of the MD-
based error estimation is noticeably better than LRC(f) when the two classes
are linearly separable (Xa1), as LMD(f) takes into account the characteristics
of the unknown P(x, y).

Both approaches provide loose estimations, even on these simple artificial
problems. However, we propose a method to tighten the MD- and RC-based
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(a) Results obtained on Xa1.

n L(f) LMD(f) LRC(f)
10 0.0 28.6 37.5
20 0.0 17.1 24.6
30 0.0 15.2 21.0

(b) Results obtained on Xa2.

n L(f) LMD(f) LRC(f)
10 50.0 89.0 87.5
20 50.0 75.3 74.6
30 50.0 71.3 71.0

Table 1: Error estimations with MD and RC on the two artificial datasets. All
results are in percentage, best values are in bold face.

bounds, so that it is possible to use them in practical applications: the idea
is to split the original dataset in two almost homogeneous subsets. In fact, as
predicted by theory [5], the effect of creating two homogeneous subsets is to de-
crease the M̂D and R̂C terms of Eqns. (1) and (2). When the MD-based method
is applied, the labels are flipped on half of the data in each subset; when the RC-
based bound is computed, each subset is assigned to one class. Then LMD

h (f)
is the new estimate, where the term M̂Dh(F) is computed using the previously
described procedure; similarly, we compute R̂Ch(F) and, consequently, LRC

h (f).
In general, any procedure which allows to divide a dataset in two homogenenous
parts can be used, such as the Nearly Homogeneous Multi-Partitioning (NHMP)
technique presented in [10]. The results, presented in Table 2, confirm the effec-
tiveness of this approach: the two bounds give the same estimations and reach
the true error value L(f).

(a) Results obtained on Xa1.

n L(f) LMD
h (f) LRC

h (f)
10 0.0 0.0 0.0
20 0.0 0.0 0.0
30 0.0 0.0 0.0

(b) Results obtained on Xa2.

n L(f) LMD
h (f) LRC

h (f)
10 50.0 50.0 50.0
20 50.0 50.0 50.0
30 50.0 50.0 50.0

Table 2: Error estimations with MDh and RCh on the two artificial datasets.
Best results are in bold face.

In conclusion, we can claim that the MD approach exploits the characteristics
of the unknown distribution P(y|x) (see Eq. (1)), thus is characterized by the
best performance when the two classes are easily separable. On the contrary,
the value of the RC estimation is independent of P(y|x) (but depends on P(x),
see Eq. (2)), thus provides tighter estimates in the case of highly overlapped
classes. The homogenizing procedure allows to improve the estimations and to
predict the true error value on the artificial datasets.

Unfortunately, it can be shown that the two methods are not sufficient to
obtain tight bounds in practice [9]. However, we can exploit the error estimation
as a guide for tuning additional (hyper-)parameters, required for building an
optimal classifier (i.e. for model selection purposes). In particular, we consider
linear classifiers, trained using the Support Vector Machine (SVM ) [3], which
requires the tuning of a hyper-parameter (C). In particular, the peeled version
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of SVM [7, 8, 9] will be used, as it allows to rigorously compute the MD and RC
bounds.

(a) MNIST

n MD RC
10 2.5 ± 0.6 2.6 ± 0.6
20 2.4 ± 0.3 2.5 ± 0.3
40 1.2 ± 0.3 1.3 ± 0.3
60 0.6 ± 0.1 0.9 ± 0.2
80 0.7 ± 0.2 0.8 ± 0.2
100 0.5 ± 0.1 0.6 ± 0.1

(b) DaimlerChrysler

n MD RC
10 24.9 ± 0.9 24.8 ± 0.9
20 29.8 ± 0.7 29.0 ± 0.7
40 27.2 ± 0.9 26.1 ± 1.0
60 27.3 ± 0.8 25.9 ± 0.7
80 25.3 ± 0.8 24.9 ± 0.8
100 25.7 ± 0.5 24.6 ± 0.6

Table 3: Test error rates obtained using MD and RC on real–world datasets.
All results are in percentage, best values are in bold face.

(a) MNIST

n MDh RCh

10 2.3 ± 0.5 2.5 ± 0.5
20 1.4 ± 0.2 1.4 ± 0.2
40 0.5 ± 0.1 0.6 ± 0.1
60 0.4 ± 0.1 0.5 ± 0.1
80 0.4 ± 0.1 0.5 ± 0.1
100 0.4 ± 0.1 0.4 ± 0.1

(b) DaimlerChrysler

n MDh RCh

10 28.6 ± 1.5 28.6 ± 1.5
20 29.5 ± 0.9 29.5 ± 0.9
40 22.2 ± 0.6 22.2 ± 0.6
60 21.4 ± 0.5 21.5 ± 0.5
80 20.6 ± 0.3 20.6 ± 0.3
100 20.7 ± 0.4 20.6 ± 0.4

Table 4: Test error rates obtained using MDh and RCh on real–world datasets,
after applying the NHMP procedure. All results are in percentage, best values
are in bold face.

4 Error estimation for model selection

We consider the MNIST [11] and the DaimlerChrysler [12] datasets, consisting of
a large number of samples, and use only a small amount of patterns for training
purposes, so that the test error rate computed on the remaining patterns is a
good approximation of the true error L(f). Concerning MNIST, we consider
the 13074 patterns containing 0’s and 1’s, allowing us to deal with a binary
classification problem. The DaimlerChrysler dataset consists of 9800 grayscale
images, representing pedestrians crossing a road and non-pedestrian examples.
While the MNIST dataset is known to be an almost linearly separable problem,
the two classes of the DaimlerChrysler dataset are highly overlapped: therefore,
these two problems are the real–world counterparts of Xa1 and Xa2.

Tables 3(a) and 3(b) show the average test error rates obtained by performing
the model selection, according to the MD and RC error estimations: m = 40 is
used for the MD term of Eq. (3), while the expectation in Eq. (2) is computed
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through a Monte Carlo procedure (100 trials). The results confirm that MD
outperforms RC when the two classes are linearly separable (i.e. MNIST), while
the opposite is true when the two classes overlap (i.e. DaimlerChrysler). Tables
4(a) and 4(b) show the effect of the homogenizing procedure: in this case, like
in the artificial one of previous Section, the two methods perform similarly. The
main advantage of this approach lies in its ability to identify a better performing
classifier, as shown by comparing these results with the corresponding ones in
Tables 3(a) and 3(b). More details can be found in [9].

5 Concluding remarks

In this paper we have shown that there is a complementarity between the Max-
imal Discrepancy and the Rademacher Complexity, when estimating the gener-
alization error of a classifier but, in general, no method outperforms the other.
In fact, MD behaves better when applied to easy separable problems, while RC
obtain tighter bounds on difficult ones. From a practical point of view, both
methods are effective in model selection and the use of a homogenizing proce-
dure to the dataset allows to further improve their performance.
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