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Abstract. Contrastive Divergence (CD) learning is frequently applied
to Restricted Boltzmann Machines (RBMs), the building blocks of deep
believe networks. It relies on biased approximations of the log-likelihood
gradient. This bias can deteriorate the learning process. It was claimed
that the signs of most components of the CD update are equal to the
corresponding signs of the log-likelihood gradient. This suggests using
optimization techniques only depending on the signs. Resilient backprop-
agation is such a method and we combine it with CD learning. However,
it does not prevent divergence caused by the approximation bias.

1 Introduction

The rising field of deep learning led to a revival of Restricted Boltzmann Ma-
chines (RBMs) [1] as typical building blocks of Deep Belief Networks (DBNs,
e.g., see[2]). Standard training of DBNs requires sequential training of RBMs in
a layer wise fashion. Thus, effective and robust methods for RBM learning are
a prerequisite for DBN training. Preforming maximum likelihood learning by
vanilla steepest ascent is not possible in RBMs because the log-likelihood gradi-
ent involves averages which are exponential in the size of the smaller RBM layer
and is thus not tractable. Therefore, Contrastive Divergence (CD, [3]) learning
has become the standard learning algorithm.

The k-step CD update is based on steepest ascent on a biased estimate
of the log-likelihood gradient gained by k steps of Gibbs sampling. The bias
of the approximation depends on the mixing rate of the Markov chain, and
mixing slows down with increasing absolute value of the model parameters [3,
4, 5, 6]. Hence, the bias increases with increasing parameter magnitude during
RBM training. Recently, it has been shown that this can lead to divergence
of the log-likelihood [7, 8, 9]. Nevertheless, by comparing the log-likelihood
gradient and the expectation of the CD-k update in small RBMs (where both
are tractable), Bengio and Delalleau [5] found that the fraction of parameter
updates for which the log-likelihood derivatives and the corresponding CD-k
components have different signs is small. Thus, optimization algorithms which
consider only the signs of the partial derivatives could lead to better learning
results.
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The speed of steepest ascent CD learning crucially depends on the learning
rate (see for example the empirical results in [9]). For large-scale problems, op-
timization algorithms are needed that increase the likelihood in few iterations
without extensive hyperparameter tuning. As the likelihood is in general in-
tractable, the choice of the gradient-based optimization algorithm is limited to
methods that do not need the absolute objective function value.

Resilient backpropagation (RProp, [10, 11]) is a powerful learning algorithm
frequently used for neural network training. It autonomously adapts the step
sizes for the parameter updates during learning. The algorithm depends only
on the signs of the partial derivatives of the objective function and not on their
absolute values. The standard variant does also not require the value of the
objective function. Thus, RProp appears to be the ideal learning algorithm for
training RBMs based on approximations of the log-likelihood gradient. It could
suffer less from approximation errors, because it just requires the signs, and can
adapt the learning rate automatically. Therefore, the combination of RProp
and CD is empirically investigated in this paper. After briefly describing RBMs,
CD-leaning, and RProp, we describe our experiments, discuss the results, and
finally draw our conclusions.

2 RBMs and CD-Learning

An RBM is a bipartite undirected graphical model. The joint distribution of
the m visible and n hidden (latent) variables under the model is p(v,h) =
e−E(v,h)/

∑
v,h e−E(v,h). The energy E is given by E(v,h) = −hTWv − vTb −

hTc with parameters θ = (W , b, c), W ∈ R
n×m, b ∈ R

m, c ∈ R
n.

The basic idea of the k-step Contrastive Divergence (CD-k) algorithm [3]
is to run a Gibbs chain for only k steps starting from a training example v(0)

producing the sample v(k). Each step t consists of sampling h(t) from p(h|v(t))
and sampling v(t+1) from p(v|h(t)) subsequently. The gradient with respect to
θ of the log-likelihood for v(0) is then approximated by

CDk(θ,v
(0)) = −

∑
h

p(h|v(0))
∂E(v(0),h)

∂θ
+
∑
h

p(h|v(k))
∂E(v(k),h)

∂θ
. (1)

3 Training RBMs with Resilient Backpropagation

Resilient backpropagation is an iterative algorithm with adaptive individual step
sizes [10]. It is frequently used for unconstrained optimization in machine learn-
ing because it is fast and robust with respect to the choice of the internal (hyper-)
parameters, has linear time and space complexity in the number of parameters
to be optimized, and is not very sensitive to numerical problems. The basic ver-
sion of the RProp algorithm1 considers only the signs of the partial derivatives of

1Usually we prefer the RProp variant called iRProp+ [11]. However, this method requires
the value of the objective function and not just the partial derivatives. Therefore, it is not
well suited for the problem at hand.
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the function to be optimized and not their values. Because experiments suggest
that the CD estimator has the correct sign most of the time [5], RProp seems
to be promising for CD learning.

Let the ith component of the mean CD-approximation over the training set

be denoted by [CDk(θ
(g))]i. In each iteration g of RProp, every parameter θ

(g)
i

is updated according to

θ
(g+1)
i = θ

(g)
i + sign

(
[CDk(θ

(g))]i

)
·Δ(g)

i . (2)

Prior to this update, the step size Δ
(g)
i is adapted based on changes of sign of

the (approximated) partial derivative [CDk(θ
(g))]i in consecutive iterations. If

the sign changes, which indicates that a local minimum has been overstepped,
then the step size is multiplicatively decreased, otherwise, it is increased. The
update rule for the step size is given by:

Δ
(g)
i =

⎧⎪⎨
⎪⎩

min(η+Δ
(g−1)
i ,Δmax) if [CDk(θ

(g−1))]i[CDk(θ
(g))]i > 0

max(η−Δ(g−1)
i ,Δmin) if [CDk(θ

(g−1))]i[CDk(θ
(g))]i < 0

Δ
(g−1)
i otherwise ,

(3)

where 0 < η− < 1 < η+ and the step size is bounded by Δmin and Δmax.

4 Experiments

We considered four artificial benchmark problems taken from the literature [12,
5, 9]. The Labeled Shifter Ensemble is a 19 dimensional data set containing
768 different samples and so the log-likelihood is 768 log 1

768 ≈ −5102.43 if the
distribution of the data set is modeled perfectly. We consider a variant of the
Bars and Stripes Ensemble with 16 units and 32 input pattern yielding a bound
of the log-likelihood of −102.59. Furthermore we considered the Diagd-problem
and the 1DBalld-problem with d = 6 dimensions. The first data set contains
7, the latter 24 unique binary vectors. The bounds for the log-likelihood are
−13.62 and −76.27, respectively.

The RBMs were initialized with weights drawn uniformly from [−0.5, 0.5] and
zero biases. The numbers of hidden units were chosen to be equal to the number
of visible units. The models were trained with RProp based on CD-1 or CD-100
on all four benchmark problems. If not stated otherwise, the hyperparameters
where set to the default values η− = 0.5, η+ = 1.1, Δmin = 0.0 and Δmax =
10100. To save computation time, the exact likelihood was calculated only every
10 iterations of the learning algorithm. All experiments were repeated 25 times.

5 Results

The left plot of figure 1 shows the evolution of the log-likelihood during learning
of the Shifter-problem with RProp based on CD-1. After an increase in the
first iterations the log-likelihood starts to decrease. The development of the
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likelihood differs a lot depending on the parameter initialization as can be seen
exemplarily in the inset plot depicting some single trials. When using the CD-
100 instead of the CD-1 approximation of the gradient a stagnation of the log-
likelihood on an unsatisfying level during RProp based learning is observed (see
right plot of Fig. 1). This happens systematically in every trail independent of
the initialization of the parameters as indicated by the quartiles.
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Fig. 1: The development of the log-likelihood during training RBMs on the
Shifter-problem with RProp. Shown are the medians over 25 trails. Left: RProp
based on CD-1. Five single trails with different parameter initializations are
exemplarily shown in the inset plot. Right: RProp based on CD-100. Error
bars indicate quartiles, the dashed line indicates the upper bound of the log-
likelihood.

During training an RBM on the Bars-and-Stripes-problem the log-likelihood
stagnates when RProp is based on CD-1 as well as on CD-100. In both set-
tings similar log-likelihood values are reached which are low compared to the
upper bound and to the maximum values reached when an RBM is trained with
steepest ascent (see empirical analysis in [9]).

The log-likelihood also stagnates when learning the Diag- and 1DBall-problem.
Here we also observe similar learning curves if the RProp algorithm is based on
CD-1 and CD-100. The results are not shown due to the great similarity to the
right plot of Fig. 1. For further empirical results we refer to the accompanying
technical report [13].

The stagnation of the log-likelihood could indicate a frequently changing sign
of the CD-approximation during the learning process. A frequently changing sign
of the approximation causes the step size for the parameter updates (3) to get
smaller and smaller and – if the step size is not bounded – to finally approach
zero. Thus it could be possible to avoid the stagnation by enlarging the minimal
possible step size Δmin. This idea is verified by the following results.

If the minimal step size Δmin is set to a value larger than zero and the
maximal step size Δmax is set to a value smaller than the default value, we
can observe big differences in the evolution of the log-likelihood during RProp
based training. As shown in Fig. 2, high (relative to the upper bound) log-
likelihood values are reached during learning the Diag- and the 1DBall-problem
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Fig. 2: Log-likelihood during training with RProp with limited step size hyper-
parameters. On the left: Learning of the Diag-problem. The step size is limited
by Δmin = 0.0001 and Δmax = 1. On the right: Learning of the 1DBall-problem
with Δmax = 1 and Δmin = 0.001 and Δmin = 0.0001 respectively.

with RProp based on CD-1 if the hyperparameters are set to Δmin = 0.0001 or
Δmin = 0.001, respectively, and Δmax = 1. A nearly identical evolution of the
log-likelihood can be observed (results not shown) if only the minimal step size
value is enlarged and Δmax is set to its default value.

When learning the Bars-and-Stripes-problem with a restriction of the step
size parameters (Δmin = 0.0001 and Δmax = 1) the log-likelihood starts to
diverge. The experiments with the Shifter-problem with restricted step size
parameters lead to similar results as the experiments with the parameters set to
the default values.

6 Discussion and Conclusions

The experiments show that the success of RProp based CD learning depends on
the data distribution to be learned and on the values of the hyperparameters
(Δmin and Δmax). If the step size is allowed to get arbitrary close to zero
(Δmin = 0.0), the training progress stagnated on an unsatisfying level for some
target distribution. With an appropriate Δmin, RProp was able to learn good
models depending on the problem.

The reason for the stagnation could be convergence to a suboptimal local
maximum. However, experiments using the expectation of CD-1 (not shown) did
not suffer from the stagnation problem. As we see no reason why learning based
on the expectation of CD-1 should be less prone to getting stuck in undesired
local optima than learning based on the CD approximation, local maxima are
not likely to be the reason.

We believe that the reason is the fast reduction of the RProp step size param-
eters Δi due to changes in sign of the gradient components induced by stochastic
effects and errors in the CD approximation. Frequent changes of the sign could
also be caused by ill-shaped log-likelihood functions [11]. However, if the RBMs
were trained with RProp based on the exact likelihood gradient, good models for
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all benchmark problems could be learned in few iterations (results not shown).
If steepest ascent can learn a distribution reliably (e.g., when applied to

Diag6 or 1DBall6), this is also possible using RProp, but in our experiments this
required Δmin > 0. In these cases, RProp may be preferable because Δmin may
be easier to tune than learning rates in steepest ascent.

When applying RProp to Shifter and Bars-and-Stripes, the log-likelihood
diverged before a good model was learned even if we constrained Δmin and
Δmax. That is, if learning diverges using steepest ascent (as reported in [9]), it
also diverged using RProp. Thus, albeit it has been reported that the sign of
the components of the CD update direction vector is often right, learning based
on these signs tends to diverge.

In future work, we will evaluate RProp in combination with other approxi-
mations of the log-likelihood gradient (e.g., based on tempered transitions [8]).
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