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Abstract. We present two inference rules, based on so called minimal
conditional independencies, that are sufficient to find all invariant arrow-
heads in a single causal DAG, even when selection bias may be present.
It turns out that the set of seven graphical orientation rules that are usu-
ally employed to identify these arrowheads are, in fact, just different in-
stances/manifestations of these two rules. The resulting algorithm to ob-
tain the definite causal information is elegant and fast, once the (often
surprisingly small) set of minimal independencies is found.

1 Introduction

Causal discovery remains at the heart of most scientific research to date. Under-
standing which variables in a causal system influence which other is crucial for
predicting the effects of actions and policies. Sometimes, it is very important to
know that a certain variable is not the cause of another. Correctly identifying
such relations from data is the focus of this article.

A popular and intuitive way of representing a causal system is in the form of
a directed acyclic graph (DAG). A causal DAG GC is a graphical model where
the arrows represent direct causal interactions between variables in a system
[1, 2]. There is a causal relation X ⇒ Y , iff there is a directed path from X
to Y in GC . The causal Markov condition links the structure of a causal graph
to observed conditional independencies X ⊥⊥ Y |Z. For details on probabilistic
graphical model concepts and terminology, the reader is referred to [1, 3].

When some variables in the causal DAG are hidden, or when there is possible
selection bias [4], the independence relations between the observed variables
can be represented in the form of a maximal ancestral graph (MAG) [5]. The
(complete) partial ancestral graph (cPAG) represents all invariant features that
characterize the equivalence class [G] of such a MAG, with a tail ‘−’ or arrowhead
‘>’ mark on an edge, iff it is invariant in [G], otherwise it has a circle mark ‘◦’,
see [6]. Tails in a PAG are associated with identifiable direct causal relations,
and arrowheads with the absence thereof, [2, 7, 8]. Fig.1 illustrates the relation
between these three types of graphs.

Recently, Claassen and Heskes [7] showed how minimal conditional indepen-
dencies, [X⊥⊥Y |Z], indicating that no proper subset Z′ ( Z can make X and Y
independent, could be employed to infer causal relations from multiple models.
The method was sound, but not complete. After section 2 offers a glimpse of
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Fig. 1: 1) Causal DAG GC over 11 nodes (dashed = hidden, grayed S = selection
variable); 2) corresponding causal MAG over observed nodes; 3) cPAG.

the state of the art approach to constraint-based causal discovery (in particular,
how to obtain all invariant arrowheads), section 3 makes a first step towards
completeness, by showing that the two rules behind this method are also suffi-
cient to cover all invariant arrowheads in a single model. Section 4 puts them
to work in an algorithm, and section 5 discusses a number of extensions.

2 Learning causal models from data

The challenge of causal discovery is how to identify all these invariant features
from a given data set, to determine which variables do or do not have a directed
path to which others in the underlying causal DAG.

The famous Fast Causal Inference (FCI) algorithm [3] was one of the first
algorithms that was able to validly infer causal relations from conditional inde-
pendence statements in the large sample limit, even in the presence of latent and
selection variables. It consists of an efficient search for a conditional indepen-
dence between each pair of variables to identify the skeleton of the underlying
causal MAG, followed by an orientation stage to identify invariant tail and ar-
rowhead marks. It was shown to be sound [4], although not yet complete. Ali
et al. [9] showed that a set of seven graphical orientation rules was sufficient to
identify all invariant arrowheads in the equivalence class [G], given a single MAG
G. Algorithm 1, below, shows the implementation of these rules in the context of
the FCI algorithm in [6], where we ignore the details behind the initial adjacency
search. (When starting from data instead of a MAG, each rule is formulated as
an equivalent set of (in)dependence statements.)

3 Invariant arrowheads and minimal independencies

This section derives the main result of this paper: that the seven graphical ori-
entation rules in algorithm 1 are, in fact, different manifestations of just two(!)
rules. To prove this, we first need to generalize the result in theorem 1 of [7] to
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Input : independence oracle, fully ◦−◦ connected graph P over V
Output : PAG P

1: for all {X, Y } ∈ V do
2: search in some clever way for a X⊥⊥Y |Z, if found
3: R0a: eliminate X−��−Y from P
4: record Sepset(X, Y )← Z
5: end for
6: R0b: orient X ∗→Z←∗Y , iff X−��−Y and Z /∈ Sepset(X,Y )
7: repeat
8: R1 : orient Z−→Y , if X−��−Y and X ∗→Z
9: R2a: orient Z ∗→Y , if Z−→X ∗→Y

10: R2b: orient Z ∗→Y , if Z ∗→X−→Y
11: R3 : orient W ∗→Z, if X ∗→Z←∗Y , X ∗−◦W ◦−∗Y and X−��−Y
12: if 〈X, Z1, . . . , Zk, Z, Y 〉 is a discriminating path for Z, then
13: R4a: orient Z−→Y , iff Z ∈ Sepset(X, Y )
14: R4b: orient Zk←→Z←→Y , iff Z /∈ Sepset(X, Y )
15: until no new orientations found

Algorithm 1: FCI for invariant arrowheads

allow for the possibility of selection bias.

Lemma 1. Let X, Y , Z and W be four disjoint (sets of) observed nodes in a
causal DAG GC , and S be a set of (hidden) selection nodes, then:

- a minimal conditional independence [X⊥⊥Y |Z] implies directed paths
Z ⇒ {X/Y/S} from every Z ∈ Z to X and/or Y and/or S ∈ S in GC ,1

- a conditional dependence X⊥⊥�Y | {Z ∪W}, created by W from [X⊥⊥Y |Z],
implies that there are no directed paths from W to X, Y , Z or S in GC .

Proof. Analogous to theorem 1 in [7], but now accounting for the fact that se-
lection can induce additional dependencies. For details see [8]. �

Together, the two rules allow to infer causal relations, even in the presence of
selection bias: find a minimal conditional independence [X⊥⊥Y |Z], and elimi-
nate Z ⇒� X and Z ⇒� S by a conditional dependence X⊥⊥�U |W ∪ Z created by
some Z ∈ Z, to infer Z ⇒ Y . We can now state the main theorem as

Theorem 2. In a PAG G, all invariant arrowheads X ∗→Y are instances of

rule (1): U ⊥⊥� V |W ∪ Y , created by Y from a minimal [U ⊥⊥ V |W], with
X ∈ {U, V,W}, or

rule (2): a minimal [Y ⊥⊥ Z |W ∪X], with an arrowhead at Z ∗→ X from
either rule (1) or rule (2).

1Many thanks to Peter Spirtes for pointing out that a similar observation was already
made in [4] (corollary to lemma 14), although it was only used to prove correctness of the
FCI-algorithm and never used as an orientation rule.
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Proof sketch. Both rules are sound, as they are direct applications of Lemma
1. The proof that they are also complete follows by induction on the graphical
orientation rules R0b−R4b, showing that none of them introduces a violation of
Theorem 2. As these rules are sufficient for arrowhead completeness, it follows
that the theorem holds for all invariant arrowheads. For the full proof, see [8]. �

4 An algorithm for arrowhead completeness

We can use the rules in Theorem 2 in an algorithm that uncovers all invariant ar-
rowheads directly from the minimal conditional independencies (and subsequent
dependencies) found, without having to refer to the structure of the graph. In
fact, we do not even need to find all minimal independencies, see [8]:

Lemma 3. Finding a single minimal independence for each pair of nodes {X,Y }
in the graph (if it exists) is sufficient to orient all invariant arrowheads.

Fortunately, the standard implementation of the FCI-algorithm already finds
only minimal sets, as it looks for separating sets Z of increasing size. Finally,
rule (2) is guaranteed to find only definitely causal tails, even with selection bias:

Lemma 4. The transitive closure of the invariant arcs found by rule (2) all cor-
respond to identifiable, definite causal relations in the underlying causal DAG.

Input : independence oracle, fully ◦−◦ connected graph P over V
Output : PAG P, causal relations matrix MC

1: for all {X,Y } ∈ V do
2: search in some clever way for a minimal [X⊥⊥Y |Z], if found
3: SCI ← triple (X,Y ; Z),∀Z ∈ Z
4: RCD ← ({X/Y/Z}; W ),∀W : X⊥⊥�Y |Z ∪W
5: end for
6: MC ← (Z ⇒� Y ), iff (Y ; Z) ∈ RCD . rule (1)
7: repeat
8: MC ← (Z ⇒ Y ), if (X, Y ; Z) ∈ SCI and Z ⇒� X ∈MC . rule (2)
9: until no new information found

10: MC ← transitive closure of all (Z ⇒ Y ) ∈MC

11: P ← eliminate X−��−Y , iff (X, Y ; ∗) ∈ SCI

12: P ← orient X−−∗Y , iff (X ⇒ Y ) ∈MC

13: P ← orient X ∗→Y , iff (Y ⇒� X) ∈MC

Algorithm 2: Algorithm for invariant arrowheads

Algorithm 2 provides an implementation. The first part, lines 1−5, is essentially
the same as before, except that when a (minimal) independency is found, it also
records which nodes destroy this dependency in RCD (line 4). The actual iden-
tification part, lines 6− 10, transfers the recorded information in the RCD and

312

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.



SCI structures directly to the causal matrix MC , where one instance of rule (2)
may trigger another (causal chain). The final part, lines 11−13, simply map the
recorded explicit causal information to tails, arrowheads and edge eliminations
in the equivalent PAG representation.

5 Experimental results and discussion

We verified the algorithm and tested its behaviour on a large set of randomly
generated causal DAGs with different edge densities and random numbers of
hidden and/or selection nodes. For each graph, the ‘true’ causal DAG was used
to function as the independence oracle. We computed all invariant arrowheads,
and compared with the cPAG calculated over the observed nodes. We also
recorded the number of (minimal) conditional (in)dependencies.

In all cases, all invariant arrowheads were correctly identifed, as predicted by
Theorem 2, and also a significant number of invariant tails. The computational
complexity of the orientation part in algorithm 2 is low compared to algorithm
1, as we do not have to check for discriminating paths, see also [10]. However,
the overall complexity in both algorithms is dominated by the initial search for
(minimal) conditional independencies, not the number found. Tabel 1 gives an
indication of the number of these independencies as a function of size for graphs
with average edge density.

nodes 6 8 10 12 14
cond.ind. 35.2 369 2820 18700 47300

min. cond.ind. 6.2 18.0 37.6 67.6 107
cond.dep. 5.0 18.0 45.1 92.5 165

Table 1: Average nr. of (minimal) cond.(in)dep. as a function of graph size

From a theoretical viewpoint, the structure independent characterization of
invariant arrowheads is quite interesting, and raises the question if a similar
approach is viable for invariant tails as well. Preliminary results suggest this is
indeed the case, but (probably) requires two more rules, similar to Theorem 2.

Perhaps the most promising aspect of the algorithm is its potential to address
the lack of robustness and flexibility that is often associated with constraint-
based methods for real world data sets, as compared to, for instance, Bayesian
scoring methods for causal discovery [11, 12]. As graph based orientation rules
rely on categorical independence decisions, one erroneous CI-test may lead to
a sequence of false orientations, even inconsistencies, without any trace of this
ambiguity in the final output graph. Our result shows that constraint-based
methods are not necessarily susceptible to this kind of instability: the structure
independent conditions in Theorem 2 can provide a direct measure of the degree
of certainty of a particular causal conclusion, similar to Bayesian methods. It
is also possible to use multiple estimates from different node combinations to
obtain a more robust valuation and detect possible inconsistencies. However, a
full treatment goes far beyond the scope of this article.
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Finally, from the derivation of the algorithm it is clear that, even if not all
independencies are found, then still all invariant tails and arrowheads identifed
by algorithm 2 remain valid. Therefore, we can bring the orientation part, lines
6 − 10, inside the CI-loop, updating each time a minimal conditional indepen-
dency is found, to effectively turn it into an anytime algorithm.

6 Conclusion

We have shown that all invariant arrowheads in the equivalence class of a causal
DAG with latent and selection variables (cPAG) are instances of just two rules,
that both start from an observed minimal conditional independence. These
arrowheads, X ∗→ Y , represent all detectable information of the form ‘Y does
not cause X’ in a data set in the large sample limit.

We applied the rules in a straightforward and efficient algorithm, that is
capable of extracting identifiable causal relations from independence relations,
when selection bias may be present. The fact that the algorithm does not rely on
the graphical structure of the PAG opens up a number of interesting possibilities
for further extensions, including more robust/direct, Bayesian estimates for the
likelihood of individual causal relations, and detection of inconsistencies.

We are currently working on two additional rules to cover invariant tails
as well. Ultimate goal is to come to some form of completeness result in the
multiple model domain for the approach taken in [7].
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