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Abstract. Graph Echo State Networks (GraphESN) extend the Reser-
voir Computing approach to directly process graph structures. The reser-
voir is applied to every vertex of an input graph, realizing a contractive
encoding process and resulting in a structured state isomorphic to the
input. Whenever an unstructured output is required, a state mapping
function maps the structured state into a fixed-size feature representation
that feeds the linear readout. In this paper we propose an alternative
approach, based on distance-weighted nearest neighbor, to realize a more
flexible readout exploiting the state information computed for every vertex
according to its individual relevance.

1 Introduction

Echo State Networks (ESN) and Reservoir Computing (RC) [1] represent effi-
cient approaches to Recurrent Neural Networks (RNNs) modeling. An ESN is
composed of an untrained recurrent non-linear reservoir and of a feed-forward
trained linear readout. Recursive Neural Networks (RecNNs) [2] are a generaliza-
tion of RNNs for processing in structured domains (SDs), e.g. domains of trees
or graphs. Recently, the TreeESN [3, 4] and GraphESN [5] models have been
proposed as efficient approaches to RecNNs modeling, allowing to extend the RC
framework for mapping input structures into vectorial outputs. The reservoir of
a GraphESN is applied to every vertex of an input graph, computing a state that
represents both its label and local topology, implementing a contractive encoding
process that converges to stable state values. The condition of contractivity, in-
herited from ESN models, allows GraphESNs to deal with directed /undirected,
cyclic/acyclic labeled graphs. Contractivity thereby assumes a further relevant
meaning in terms of the extension of the class of data structures supported by
RecNN models, typically limited to directed acyclic graphs.

Whenever a single vector is required in output, there is the problem of ex-
tracting/weighting the vertices states to get a fixed-size feature representation
to feed the readout. A general approach in this concern should be able to deal
with graphs of different sizes without forcing alignments limiting the structure
topologies. A supersource state mapping function (SMF), selecting the state of
the supersource (when defined), and a mean SMF, averaging the state over the
vertices, have been proposed [3, 5]. The choice of the SMF has revealed a critical
role on the model in relation to the properties of the task, showing the relevant
effect of the extraction of information from the reservoir space [3]. Although
such fixed metrics turned out to be effective in applications [3, 5], more flexible
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solutions still need to be explored. In this paper we propose an alternative ap-
proach to implement the readout of a GraphESN, based on the distance-weighted
K-nearest neighbor (K-NN) algorithm. In particular, we attempt to model the
influence of every vertex state on the final output, proportionally to its ability
to retain useful information about the distribution of the vertices states with
respect to the target. Such approach would fit more flexibly the properties of
the target task, e.g. in the context of toxicity prediction, where the influence of
different atoms on the toxicity of a molecule could significantly vary.

2 GraphESNs for SD processing

A graph g is a couple (V(g), E(g)), where V (g) is the set of vertices and E(g) =
{(u,v) : u,v € V(g)} denotes the set of edges. The number of vertices of g is
denoted by |V (g)|. We use V and FE in place of V(g) and E(g), respectively,
if the reference to the graph is implicit. The neighborhood of v € V is the set
of adjacent vertices of v in the undirected version of g, i.e. for an undirected
graph N (v) = {u € V : (u,v) € E}. The degree of v is the dimension of
its neighborhood, i.e. |M(v)|. The maximum degree over the set of graphs
considered is indicated as k. Each vertex v has a vectorial numerical label
associated, u(v) € RNV, where RVU is a vectorial label input space. The set of
graphs with labels in RNV and maximum degree k is indicated by (RNv)#F.
We are interested in computing structural transductions (STs), in particular
functions mapping an input graph g into a fixed-size vectorial output y(g) €
RM ie. T : (RNv)#k 5 RN Such STs are also called structure-to-element
STs [5]. STs can be conveniently computed as T = Tout © X 0 Tepe, where Tep. is
an encoding transduction, X is the SMF and 7T, is an output function. T, :
(RNv)#k — (RNR)#F maps an input structure g into an isomorphic structured
state x(g), where RV is a feature (state) space. The SMF X : (RVr)#k s RNr
maps a structured state x(g) into a fixed-size feature representative for the whole
graph. Finally, T, : RV® — R is applied to compute the output, i.e. y(g).
A GraphESN computes partially adaptive STs. It consists in an input layer of
Ny units, a reservoir layer of Ng non-linear (sparsely connected) recursive units,
and an readout layer of Ny linear feed-forward units. The reservoir computes a
fixed encoding Ten. by implementing a local encoding function 7, which has the
role of recursive state transition function and is applied to every vertex of the
input graph, i.e. x(v) = 7(u(v),x(WN(v))) = f(Winu(v) + 22, cprmy WX(V')),
where W;,, € RVr*Nv ig the input-to-reservoir weight matrix, W € RNz*Nr
is the (sparse) recurrent weight matrix for the states of the neighbors and f is
the component-wise applied activation function of reservoir units (we use tanh).
Function 7 expresses the dependencies of the state of v from the states of its
neighbors. Differently from standard ESN processing, the computation of the
state for v does not depend only on the state of a predecessor, but more generally
from the states of vertices in the neighborhood of v, topologically extended over
g. The reservoir is initialized to implement a contractive 7, which ensures the
existence and uniqueness of a solution of x(v) = T(u(v),x(N(v))) Vo € V, also
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in case of mutual dependencies among states of different vertices (i.e. allowing
to manage undirected and cyclic graphs), according to the Banach Contrac-
tion Principle. Under such condition, a stable encoding can be implemented
using an iterated version of 7: x,(v) = f(Winu(v) + 3, cn) Wx,_1(v')).
At each pass t of the encoding process on graph g, the previous equation is
applied to every v € V, until the state of each vertex converges to a stable solu-
tion. In practice, the encoding is stopped when ||x;(v) — x;—1(v)||2 < eVv € V,
where € is a small threshold. A null initial state is set for every vertex, i.e.
xo(v) = 0 € RN&. Overall, the encoding requires a single presentation of
input graphs, with cost O(Ngk|V|)[5]. Contractivity of 7 also bounds reser-
voir dynamics within a region characterized by interesting Markovian properties
[4, 6]. Accordingly, the state computed for vertex v depends on its label and
local topology, with more distant vertices having a progressively decreasing in-
fluence. Function 7 is contractive! with respect to the state whenever 3C €
[0,1) such that Vu € RNV Vxy,... ,xp,x},...,x), € RVE||r(u,x1,...,%) —
T(u,xi, ..., x| < Cmazi<i<kl|x; — xj||. Assuming tanh as activation func-
tion, a condition for the contractivity of 7 in the Euclidean norm is given:
vu € RM vxy, ... xp,x],...,x, € RVR we have that ||7(u,x1,...,xx) —
(X, %) 2 = [ltanh(Winu+ 377 W) —tanh(Winut 77 W)l <
| S Wi = x)lla < WLl 2 (o = xDlle < [Wla £y 1% — il <
W |k max;—1,_x ||x; — x}[|2. Contractivity is ensured when o = [|[W|jgk < 1,
where ¢ is the contraction coefficient, controlling the degree of contractivity of
reservoir dynamics. A simple ESN-like initialization for a GraphESN consists
in a random setting of W, satisfying o < 1 2. 'W,,, weights are chosen from a
uniform distribution in [—wjy,, w;,], where w;, is an input scaling parameter.
The encoding terminates yielding a stable structured state x(g). The SMF
is then applied to extract a fixed-size X' (x(g)) from the set of reservoir states for
the vertices of g. In standard RecNNs this operation consists in selecting the
state of the supersource of g (supersource SMF). Such choice, however, is limited
to classes of graphs for which a supersource is defined, e.g. the root for trees.
More in general, a mean SMF can be used, i.e. X(x(g)) = |V|™' ¥, cp x(v),
which averages the states of the vertices in g. The linear readout is then applied
to X(x(g)), implementing an adaptive Tous, i.6. y(8) = Tout (X (x(g))).
GraphESN with mean SMF has shown loosely comparable performance to
those of (more costly) state-of-the-art models for SDs [5], including Graph Neu-
ral Networks (GNNs) [7], featured by adaptive contractive encodings. However,
using fixed SMFs potentially discards useful information about the distribution
of the vertices states relatively to the characteristics of the task [3]. In partic-
ular, the mean SMF implies an equal weighting of the states of vertices in the
input graph, so that every vertex has the same influence on the output. We pro-
pose a different approach to weight the influence of every vertex on the output,
proportionally to the extent to which it is helpful in characterizing the target.

INote that the definition of contractivity given here is different from the one given in [5].
2Contractivity of 7 may hold in any norm. Thus, larger values of ¢ can be used, yielding
to convergent encodings even if violating the condition in the Euclidean norm.
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3 Exploiting Vertices Information Using weighted K-NN

Suppose we have a training set 7 = {(g,y:,(g)) : & € G,yi,(g) € RV} 3,
where G is a finite subset of (RVV)#*. Given the set of reservoir states com-
puted by the GraphESN for the training graphs, we associate to every training
vertex state in the reservoir space the target of the corresponding graph, i.e.
Vig(v) = yig(g),Yv € V(g),Vg € G. Thereby, given an unseen input graph
g and the reservoir states x(v) Vv € V(g), an output value y(v) is computed
for every vertex of g. This is realized by resorting to a distance-weighted K-
NN algorithm: y(v) = (X5, 0y, (X)) K, wl”, where ol¥,...,v¥ are
the training vertices corresponding to the K closest training reservoir states to
x(v), and wlm = (I|x(v) — x(vN)[|3)~! is the inverse square of the Euclidean
distance between x(v) and x(v}). The final output of the model is computed
by a weighted sum y(g) = (X, cv (g @ (V)Y (v))/ X pev (g) @r(v), where oy (v)
represents the relative relevance of vertex v on the model output. Such rele-
vance is assumed to be stronger for vertices whose states are in a region of the
reservoir space corresponding to rather uniform training target values. This in-
sight can be particularly appreciated e.g. in the context of predictive toxicology,
where atoms of specific elements within a specific topology (e.g. halogens) could
consistently have a stronger influence than others (e.g. hydrogens) on the toxi-
city of a molecule. Rather than treating in the same way the information from
different atoms, modeling their relevance would result in a more suitable ap-

proach. Accordingly, o, (v) = (Zfil wgﬂ))/ ZZKZI wgv)(y(v) —yig(]))?, ie. the
inverse distance-weighted variance of the target associated to the vertices of the
K neighbors of x(v). The computation of the output of a GraphESN in which
the readout is implemented using K-NN with the weighting scheme described
here (denoted as GraphESN-wnn), is shown in Fig. 1. Such readout implemen-
tation would combine in a flexible approach the Markovian organization of the

reservoir space and the properties of the target task.

4 Experimental Results

We applied GraphESNs to a set of real-world classification tasks from a Chemical
domain. The Predictive Toxicology Challenge (PTC) dataset [8] reports the
carcinogenicity of 417 molecules relatively to four types of rodents: male mice
(MM), female mice (FM), male rats (MR) and female rats (FR). Molecules are
represented as undirected graphs, where vertices correspond to atoms and edges
to bonds. Each vertex label contains a 1-of-m encoding of the atom element and
its partial charge information, with label dimension of 24 and maximum degree
k = 4. A classification task is defined for each type of rodents as in [9], with
target +1 for active molecules and —1 for inactive molecules. The number of
molecules with defined target is 336 (MM), 349 (FM), 344 (MR) and 351 (FR).

We considered reservoirs with 40% of connectivity, o € {0.5,1,2,3} and
win, € {1,0.1,0.01}. For standard GraphESNs we used Ng = 100, mean SMF,

3E.g. yig(g) € {—1,+1} for classification tasks.
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Fig. 1: Reservoir space of states computed for vertices of training graphs, and
output processing for a test graph in GraphESN and GraphESN-wnn.

and readout trained using pseudo-inversion and ridge regression with regulariza-
tion parameter A € {107¢|1 < i < 7}. For GraphESNs-wnn we used Np = 10,
with K € {1,5,15,30,50}. For computational efficiency, the K-NN search was
implemented using kd-trees (reducing the cost up to O(log >, [V (g)|) for each
vertex) and approximating the reservoir (search) space of the training patterns
with the space of its first three principal components (PCs). Such approximation
is particularly meaningful in light of the Markovian characterization of reservoir
spaces due to contractive dynamics, with the first PCs collecting almost all the
signal [6]. The performance accuracy was evaluated by 5-fold stratified cross-
validation as in [9], with 5 independent (random guessed) reservoirs for every
reservoir hyper-parametrization. For model selection, in each fold the training
samples were split into a training and a (20%) validation set. Reservoir hyper-
parametrizations yielding non convergent encodings were discarded. Table 1
compares the mean test performance of GraphESNs and GraphESNs-wnn after
model selection on the validation set of the reservoir hyper-parameters and read-
out regularization. GraphESN-wnn outperform GraphESN on every PTC task
with the exception of MR. The distance between the performances is particularly
noteworthy for FM and FR. A comparison with state-of-the-art kernels for SDs

Model MM FM MR FR
GraphESN 62.87(£1.2) | 60.40(£1.7) | 59.43(x1.9) | 64.44(%£0.9)
GraphESN-wnn | 63.04(+2.7) | 63.32(£2.6) | 58.02(%2.1) | 67.37(%2.5)

Table 1: Mean test accuracies (%) on PTC for GraphESNs and GraphESNs-wnn,
after model selection on reservoir and readout.
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is provided in Table 2. We considered the performance of Marginalized (MG),
Optimal Assignment (OA) and Expected Match (EM) kernels on the same tasks
[9]. By adopting a model selection criterion similar to [9], Table 2 reports the
‘best classification’ results (for reservoir guesses) after model selection of the
readout regularization only. GraphESN-wnn compares well with all the kernels,
with significantly better results in particular for FM and MR.

Model MM FM MR FR

GraphESN 68.45(£2.4) | 64.77(£3.5) | 65.99(x2.6) | 68.95(+2.2)
GraphESN-wnn | 69.65(+2.7) | 67.91(4+4.8) | 67.43(+4.5) | 69.25(+3.1)
MG-Kernel 69.05(£1.5) | 64.76(x1.2) | 62.50(x1.2) | 70.09(%0.6)
OA-Kernel 67.87(+£1.7) | 65.33(£0.9) | 63.39(+2.1) | 70.37(%1.1)
EM-Kernel 66.97(x£1.1) | 64.47(£1.2) | 60.84(+1.7) | 68.95(%0.7)

Table 2: Mean best test accuracies (%) on PTC for GraphESN, GraphESN-wnn
and kernels for SDs after model selection on the readout.

5 Conclusions

We have presented a method for weighting the contribution of vertices states in
an instance-based readout of GraphESN. Preliminary experimental results on
real-world tasks suggest the potentiality of the approach. Our investigations
pave the way for further studies on adaptive modeling of the influence of each
vertex state on the output. Preserving the extreme efficiency of fixed contractive
RC encodings, more flexible methods for dealing with reservoir information can
result in effective models for approaching relational and SD learning tasks.
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