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Abstract. In some classification problems the distribution of the test
data is different from that of the training data because of external manip-
ulations to the variables we observe. We propose a classification scheme
which is robust to outside interventions by identifying causes in the train-
ing data, given that causes of a target variable remain predictive even
when the data is manipulated. We do this by extending Relevance Learn-
ing Vector Quantization (RLVQ), a classification scheme that learns a
relevance profile for the classification task presented. Our proposed al-
gorithm, Causal-RLVQ, learns a relevance profile that weights causally
relevant features more strongly. The algorithm can determine a trade-
off between robustness to intervention and accuracy on non-manipulated
data, yielding RLVQ as a special case.

1 Introduction

The task of performing classification on data for which some of the variables
have been externally manipulated is a specific case of the dataset shift problem.
This can occur when deploying a classification in many practical settings; for
example, we may be trying to classify whether a region is at risk of a disease
outbreak based on some environmental and demographic factors, when some of
those factors have been directly influenced by other parties in ways not seen in
the training data.

Finding the causes of a target variable is primarily useful in order to predict
the effects of interventions on that variable, and in the last decade a number
of methods have been developed to do this on purely observational data [1]. It
therefore makes sense for prediction and causal discovery to be tightly coupled,
and the algorithm we describe in this work carries out both tasks simultaneously
in a prototype-based learning scheme.

In this paper we introduce a scheme that extends relevance learning vector
quantization (RLVQ) [2]. RLVQ generalises the distance measure of input data
such that the features relevant to the target variable are weighted more heavily.
Our extension, Causal RLVQ, introduces a new parameter α which determines
how far to bias the relevance weights towards causative features. When α > 0,
causative features are favoured, giving us robust classification at test time under
such cases where the new data is suspected to have been intervened upon. We
do this by trying to identify so called “V -structures” (section 2) in the data.
Code and data are available at github.com/makerere-compute/causal-rlvq.
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Fig. 1: Non-fully connected configurations of 3 variables. See text for details.

2 Identifying causes in observational data

Techniques for recovering causal structure from observational data broadly fall
into Bayesian model search (e.g. [3]) or constraint-based/hypothesis testing
techniques [1] (the latter having recently been found able to deal even with the
extreme 2-variable case [4]). A fundamental concept in this work is conditional
independence. When we have sets of three or more variables, conditional inde-
pendence properties can help to rule in or out particular causal configurations of
the variables. X is conditionally independent of Y given Z, written X ⊥⊥ Y | Z,
if P (X |Y, Z) = P (X |Z).

Figure 1 shows some configurations of three variables X, Y and Z: (a) Col-
lider (X ⊥⊥ Z but X �⊥⊥ Z | Y ), (b) Chain (X ⊥⊥ Z | Y ), and (c) Fork
(X ⊥⊥ Z | Y ). Note that the chain and fork are in the same conditional indepen-
dence class, but the collider is uniquely specified by its conditional independence
properties. The collider is therefore an important structure in causal discovery.
In hypothesis tests, such as the prototypical Inductive Causation algorithm [1,
§2.5], colliders are identified by looking for any variables X and Z which are un-
connected (dependent under every conditioning set) with each other, but both
of which are connected with a third variable Y . When such a configuration is
found, the edges are orientated as in Figure 1(a). This is the approach that we
adopt here, using the RLVQ framework itself rather than hypothesis tests.

3 RLVQ

The basic LVQ scheme is set up as follows; Given a dataset D = {xμ, yμ}P
μ=1

where xμ ∈ RN and the labels yμ ∈ 1, 2, . . .C correspond to one of the classes,
the LVQ scheme is parameterized by a set of prototype vectors w =

{
wj , c(wj)

}M

j=1

with the prototype vectors wj having labels c(wj) ∈ 1, 2, . . .C.
For a particular dissimilarity/distance measure d(x,w), the LVQ classifier

employs a Winner-Takes-All scheme where an arbitrary input is assigned to the
class c(wL) of the closest prototype with d(x,wL) ≤ d(x,wj) for all j.

Many modifications of Kohonen’s original formulation [5] have been sug-
gested with the aim of achieving better convergence and generalization behavior.
A specific set of modifications have been towards accounting for heterogeneous
datasets where features can have different meanings and magnitudes. These are

316

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.



the class of relevance learning schemes which employ adaptive scaling factors for
each dimension in the feature space. For our purposes it will suffice to give the
general formulation of RLVQ.

For RLVQ we can consider a generalized Euclidean distance of the form

d(x,wJ) =
N∑

j=1

λj(xj − wJ
j )2, (1)

as the dissimilarity measure where λj are the adaptive relevance factors. The
special case λj = 1/N for all j = 1, . . .N is analogous to the original LVQ1
formulation. Each update of the winning prototype wj is accompanied by a
corresponding update in the relevance factor λj(t) as follows;

λj(t) = λj(t − 1) − ηλφ · (xj − wJ
j )2 with φ =

{
+1 if yμ = c(wJ(t)),
−1 else

(2)

where λj(t) is restricted to non-negative values and obeys the normalization∑N
j=1 λj = 1.
The λ update hence decreases the relevance factor λj if the winning prototype

wJ does represent the correct class but the contribution (xj −wJ
j )2 to d(x,wJ)

is relatively large. Conversely the weight of a feature with relatively small (xj −
wJ

j )2 is increased in such a case. The learning rate ηλ controls the magnitude
of the prototype and relevance factor updates at each step.

4 Causal RLVQ

CRLVQ is our extension of the RLVQ scheme where updates favor features that
are causally related to the target feature. Our assessment of causal relevance
is based on identifying V-structures with respect to the target. RLVQ gives a
profile that represents how strongly each single dimension of the data is predic-
tive of the target. In CRLVQ instead of looking at a single dimension, we look
for evidence that there are two dimensions xi and xk that are predictive of the
target. To ascertain that xi and xk are in a V-structure with the target we also
check that they are independent of each other.

Figure 2(a) illustrates this salient distinction between RLVQ and CRLVQ. We
conceive of features (x1, . . . , xP ) as being characterisable along two dimensions:
their predictiveness of the target variable, and their causal effect on the target
variable. Standard relevance learning aims to give higher weight to a set of
variables (1) which are highly predictive; causal structure learning aims to find
causes (2) or effects of a target; our work here identifies variables which are
predictive causes (3). Figure 2(b) shows the difference in which RLVQ considers
each feature separately; CRLVQ takes features pairwise in order to identify V-
structures with the target.

CRLVQ extends the RLVQ update by adding two extra evaluation criteria
to equation 2. The three criteria in total are in a sense a distance-based formu-
lation of the V-structure condition. For every example presented to the CRLVQ
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Fig. 2: RLVQ and CRLVQ formulations. Panel (a) is an illustration of placement
of variables across the predictive-causal space. Panel (b) shows how RLVQ is
extended to CRLVQ

classification scheme, each component of λ in CRLVQ is hence updated for every
dimension xj for each introduction of a data example as follows

λj(t) = λj(t− 1)− ηλφ · (xj −wJ
j )2 −αηλ ·

(
min
k �=j

(
φ · (xk − wJ

k )2 − (xj − xk)2
))
(3)

The parameter α is a parameter that weights the two new criteria. Standard
RLVQ is hence a special case of CRLVQ when α = 0. We evaluate the indepen-
dence of the different data dimensions by looking at their absolute difference. In
Z-score transformed data, this will be a small quantity for pairs of dimensions
that are positively correlated. The update hence rewards any feature xj if it has
a strong correlation (small difference) with the target/label vector as represented
by a correct prototype (xj −wJ

j )2 , and also if there is strong evidence of another
feature with a strong correlation to the target as well (xk −wJ

k )2, and if feature
xj and xk are weakly correlated (large difference apart).

Note however that there might be other relationships between the dimensions
that make them dependent on each other, but that this update would not capture
– for example negative correlation.

5 Experiments

Simulated causal networks were used to demonstrate the effect of the causal
λ update. One causal network was formulated as a 5-feature linear Gaussian
network with 2 causes, 2 effects and 1 irrelevant feature, shown in Figure 3(a).
In Figure 3(b) we can see that as α is increased, the relevance weights increase
for the features that are causally relevant.

For experiments on manipulated test sets we used a network simulated from a
Bayes net and used for several causal competitions as a trial set for tuning causal
algorithms. It is commonly called the Lucas dataset[6, 7] and tries to predict
lung cancer based on different features. Three versions of the dataset were used:
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Fig. 3: CRLVQ relevance weights for simulated network data. Panel (a) shows
the simulated network with 2 causes, 2 effects and 1 irrelevant feature. Panel
(b) shows the relevance profile under RLVQ and under CRLVQ for different
parameter settings.

Fig. 4: Lucas graphs showing the network structures for the unmanipulated set, Lucas0 and
the manipulated sets, Lucas1 and Lucas2. The different features in the graphs are labelled as
follows; 0 - Lungcancer, 1 - Smoking, 2 - Genetics, 3 - Allergy, 4 - Anxiety, 5 - Peer Pressure,
6 - Yellow Fingers, 7 - Born an Even Day, 8 - Attention Disorder, 9 - Car Accident, 10 -
Coughing, 11 - Fatigue.

Lucas0, the natural network (unmanipulated) from which the training set was
obtained, and manipulated datasets Lucas1 and Lucas2 (manipulated variables
shown in Figure 4). All training was carried out on unmanipulated data.

Figure 5 shows the test error scores for the three datasets Lucas0, Lucas1
and Lucas2 for CRLVQ with varying α parameters. The first row with α = 0
represents RLVQ. Lucas0 represents the unmanipulated(natural) dataset while
Lucas1 and Lucas2 represent manipulated/intervened upon datasets. Test re-
sults are obtained after 50 epochs through the data with ηλ = 10−5.

The unmanipulated dataset is best predicted by RLVQ (α = 0). For the
manipulated datasets, we notice that test error increases for RLVQ as expected
because there are fewer relevant features. We also see an increase in performance
on these datasets as α is increased, as causal dimensions in the data dominate the
distance measure. Figure 5 (b) illustrates the relevance profile for the different
values of α; we can see that as α increases, the relevance weight of variable 1 (a
cause) is increased at the expense of variables 10 and 11 (effects).
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Lucas Dataset
α Lucas0 Lucas1 Lucas2
0 0.1970 0.2370 0.2620

1.0 0.2040 0.2040 0.2030
2.0 0.2040 0.2040 0.2030
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(b) RLVQ as λ changes

Fig. 5: Test error results for RLVQ and CRLVQ for the different datasets Lucas0,
Lucas1 and Lucas2.

6 Conclusion

This paper applies concepts from causal discovery to relevance learning for
prototype-based classification. The goal is to assure robust classification when it
is not certain that the test set has the same distribution as the training set. We
have given a proof of possibility on simulated data, though our formulation still
has some limitations, particularly in our assessment of independence amongst
features in the data. An interesting direction to address this could be to extend
our current work to matrix relevance LQV [8].
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