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Abstract. Clustering methods and nearest neighbour classifiers typically compute 
distances between data points as a measure of similarity, with nearby pairs of 
points considered more like each other than remote pairs. The distance measure of 
choice is often Euclidean, implicitly treating all directions in space as equally 
relevant. This paper reviews the application of Fisher information to derive a 
metric in primary data space.  The aim is to provide a natural coordinate space to 
represent pairwise distances with respect to a probability distribution p(c|x), 
defined by an external label c, and use it to compute more informative distances. 

1 Introduction 

The primary purpose of this work is to define framework to calculate the similarity 
between data points, in primary data space, using an auxiliary variable which is a 
class label. This will enable networks of data points to be arranged in a way that is 
informed about this variable.  For the sake of illustration, we measure classification 
rate using k-NN to evaluate the near neighbour homogeneity of the data with respect 
to the auxiliary variable. 
 In the standard formulation, each observation consists of a set of N variables, 
and therefore represents a point in the N-dimensional space. A very intuitive and 
widely used way to compute distances between data points is to use the Euclidean 
metric. This distance assigns equal relevance to all directions and, by extension, to all 
variables, but in reality each attribute will have a different degree of influence over 
the auxiliary label c. In this work, similarity between data points is defined with 
respect to some auxiliary data comprising observations of a dichotomous variable c 
which divides the dataset into two classes. Data points are considered close to each 
other if they have similar class membership probabilities, and this definition also 
applies to groups of points and areas of the dataspace. The goal of this definition of 
similarity is to form clusters or divide the data into classes that are homogeneous with 
respect to the label c. That is precisely what a learning metric does. Effectively, such 
a metric resizes each dimension in space expanding those corresponding to relevant 
features and compressing those related with less important ones. 
 While the bulk of statistical work on Fisher information is focused on the space 
of model parameters, there also is some previous work on learning metrics defined in 
primary data space [1,2,3] with successful applications to self-organizing maps and 
standard clustering algorithms such as k-means. In common with the literature, the 
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work presented in this paper shares the objective of developing an intelligent metric 
that improves the performance of the algorithms, but differs in three key aspects. 
 Firstly, the way the Fisher metric is obtained. By definition, the metric is 
derived from the probability density p(c|x), which must therefore be estimated [1,2,3]. 
The estimations used in this work are drawn directly from the posterior distributions 
of class membership, with either generalised linear models or generic (semi-
parametric) non-linear inference models, namely a linear logistic regressor and a 
multilayer perceptron (MLP).  
 The second main difference is the approach used to compute distances. In the 
non-Euclidean space resulting from the application of the Fisher metric, the shortest 
distance requires the explicit optimisation of the distance measured across a geodesic 
path. This is discussed in [3,4,5], but the two most related solutions [3] make strong 
simplifying assumptions, one using a single straight line between distant points and 
the other depending on the particular layout of the data points. We propose a new 
method which is efficient in iteratively adjusting the path towards the shortest 
distance, as explained in section 2.2. 
 Finally, the motivation for the construction of the Fisher metric in this work is 
different than that of the existing literature. In previous work, the concept of learning 
metrics is included into existing clustering and classification methods to improve their 
performance. That is not the case here. The methodology that this paper presents has 
been developed with the intention of applying it to the construction of graphs from 
datasets with auxiliary variables.  

2 Methodology 

This section describes the different concepts involved in the metric building process. 
First the Fisher information is introduced and derived for linear and non-linear 
estimators assuming a logistic regression transfer function of the output. Second, the 
problem of finding geodesics is addressed and introduces the proposed generic 
approach for distance estimation in primary data space with non-linear metrics. 

2.1 Fisher information in the primary data space 

The FI value [6] at a particular data point x in the space is the difference between the 
information that the probability distributions p(c|x) and p(c|x+dx) carry, where dx is 
infinitesimally small. In other words, a large FI value at a certain point means that a 
slight change in the position of that point strongly influences the posterior density 
function and thus that area of the space is very relevant with respect to the auxiliary 
data c. 
  The metric is defined by the matrix G(x) in the well-known quadratic 
differential form [7]: 

 
 

2 ∑ ∑ 11   (1) 

 The Fisher information matrix in primary data space is defined equivalently by: 

|

    | ln |
 

| ln |
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 The calculation involves the conditional expectation over the values of the 
external label c with respect to the probability function p(c|x). Limiting c to a discrete 
variable simplifies the calculation because the expectation, which would be computed 
as an integral in the continuous case, becomes a summation. We further assume a 
specific structure for the form of the posterior probability p(c|x), namely  

 
 |

1

1
, 0,1  (2) 

 The dependence on x is contained in the activation variable a, which defines the 
complexity of the estimator. In the logistic regressor, a is just a linear combination of 
the input vector x and the coefficient vector β, while in the case of the MLP it is given 
by a non-linear, but differentiable function of the inputs. Once p(c|x) is defined, the FI 
can be expressed in matrix form, assuming column vectors, as follows: 

1  
 Returning to (1) yields the distance between infinitely close points. A general 
formula for the distance between two points is obtained by solving the path integral: 

 
 ,  (3) 

 The next section provides a solution of integral in (3) in closed form for 
dichotomous classifiers of the assumed form, whether linear or not. 

2.1.1 Fisher distance with a linear estimator 

We start with the logistic regression, with a=βTx+β0. Since a is linearly dependent on 
x, its first derivative is constant, resulting in the following expression for the integral: 

 
 , 1  (4) 

which is readily solved by substituting a as the integration variable giving: 

 
 , 2  (5) 

 It is important to note that distance is independent of the particular path from xA 
to xB., in effect collapsing the data space onto the projections along the vector defined 
by the weights β. 

2.1.2 Extension to a non-linear estimator 

The natural next step is to develop an expression for the distance when using a non-
linear estimator of the posterior density distribution by solving equation (3) as in the 
previous section, but with a as a non-linear function of x. Using the first two terms of 
the Taylor expansion of a produces a linear approximation for which the distance 
expression (5) applies. Equation (5) is thus globally applicable for the linear case, but 
only locally valid for a non-linear estimator. In this work, the so-called free points 
approach is used to overcome this limitation.  
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2.2 Geodesic distances. The free points approach 

The algorithm described in this section performs two important functions: it ensures 
that the Taylor approximation used previously holds and it finds the geodesic path 
between xA and xB. Figure 1 shows an illustrative sketch of the approach. 
 

 
Fig. 1: The free points approach for 3-dimensional data.  

 The method starts by dividing the straight line joining xA and xB into segments. 
A hyperplane is then defined between each pair of consecutive segments. All these 
hyperplanes are parallel between each other and orthogonal with respect to the 
straight line path. Then, a point is defined in each hyperplane, with the idea of 
forming a path from xA to xB by joining all the points as shown in fig. 1. Since the 
points can move freely within their respective hyperplanes, any path can be formed by 
appropriately choosing the number of hyperplanes and the position of the points. 
 The points move as a result of the minimization of the objective function, 
defined as the overall length of the path computed as the sum of each segment’s 
length. Each of these individual distances is calculated using (5). Since this applies 
locally for the non-linear case, every free point must be close to its two neighbours, 
and that is guaranteed by choosing a large enough number of hyperplanes. 

3 Experimental results 

In this section, the Fisher metric is put into practice in a classification problem using 
synthetic data. Two versions of the standard k-nearest neighbours (kNN) classifier are 
compared: one computes pairwise distances using the Euclidean metric (E-kNN) and 
the other uses the Fisher distance (F-kNN) derived from a MLP. 
 The method is benchmarked using a kNN classifier to assess the homogeneity of 
the resulting network with respect to the external label, not because the classifier itself 
brings any originality. Fisher metric based classifiers can be found in the literature, 
the most important being the SVM-Fisher kernel methods [8]. 
 The dataset consists of two classes generated by two Gaussian distributions with 
same means but different standard deviations (0.9 and 2). One distribution contains 
the other, creating a non-linear border. This is a large dataset (104 samples/class) that 
provides the MLP with enough training episodes to accurately estimate p(c|x), which 
is critical for the estimation of the Fisher information. A validation dataset is 
generated using the original generating functions of the data. This smaller dataset 
(250 samples/class) contains the points to be classified, calculating distances using 
either the Euclidean or Fisher metric and taking a majority vote in the usual way. 
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 Table 1 shows the results of the simulations. The first row in each cell shows the 
percentage of correctly classified points using E-kNN and F-kNN in that order. The 
relative increase of accuracy when using the Fisher metric appears in the second row. 
 

     N 
k 

2 5 10 15 25 40 

3 
69.4/72 
+3.75% 

87.4/73.6 
-15.79% 

88.8/92.2 
+3.83% 

81.6/93.2 
+14.21% 

66.4/94.6 
+42.47% 

51.6/94.2 
+82.56% 

5 
72.4/74.8 
+3.31% 

88.2/72.8 
-17.46% 

89/92.2 
+3.6% 

80/93.4 
+16.75% 

64.4/95 
+47.52% 

50.6/94 
+85.77% 

7 
74/74 
+0% 

88.2/74.4 
-15.65% 

88.8/92.2 
+3.83% 

77.6/93 
+19.85% 

61.8/95.2 
54.05% 

50.4/94 
+86.51% 

11 
73.6/75.6 
+2.72% 

88.8/76.6 
-13.74% 

87.2/93.2 
+6.88% 

74.8/93.2 
+24.6% 

57/95.2 
+67.02% 

50.2/94 
87.25% 

15 
75.4/76.8 
+1.86% 

88.2/79 
-10.43% 

86/93.4 
+8.6% 

73/93.8 
+28.49% 

56.2/95.2 
+69.4% 

50.2/94.2 
+87.65% 

21 
75/76.6 
+2.13% 

88.6/79.4 
-10.38% 

85.8/93.8 
+9.32% 

71.4/93.2 
+30.53% 

54.4/95.2 
+75% 

50/94.4 
+88.8% 

Table 1: Simulation results for input dimensionality N and k neighbours.  

  In low dimensions, the two methods perform similarly. However, the accuracy 
of the Euclidean classifier increases until N=10 and decreases from then on. To 
understand this behaviour, a histogram of the pairwise distances is plotted in fig. 2 for 
different values of N, comparing interclass and intraclass distances. The performance 
of kNN is best when intraclass distances are small compared to interclass distances. 
  

 

Fig. 2: Histograms of the pairwise distances for different values of N. 

 The 2-dimensional case in Figure 2 shows all three distributions overlapping. 
Individual histograms show that intraclass distances have their peak slightly more to 
the left than interclass distances. In the next plot, N=10, the shape shifts right and 
starts splitting up into two humps, the left one corresponding to class 1 intraclass 
distances and the other formed by class 2 intraclass distances and interclass distances. 
The increase of the distances is related to the increase of the diagonal of a hypercube 
when N grows and is caused by the nature of the high dimensional space. 
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 The reason for class 1 distances to shift more slowly is their smaller standard 
deviation. At this point, the classification of class 1 members becomes easier because 
their intraclass distances remain small with respect to interclass ones. For class 2 the 
situation is similar as when N=2, so the overall result is an increase of the accuracy. 
 In the last four cases the distances keep growing as mentioned. Very important 
is the fact that class 2 distances increase faster than interclass distances. This results in 
a clear division of the three groups with increasing width and mean when going from 
class 1 to class 2, causing the classification of all points as class 1 members. In the 
case of an actual class 1 member, intraclass distances are much smaller than interclass 
ones, so the k chosen neighbours always belong to class 1. For class 2, interclass 
distances are smaller, resulting in a wrong choice of neighbours and a bad prediction. 
 The Fisher metric compensates this effect by resizing the space dimensions. On 
top of that, the MLP estimates p(c|x) much better in high dimensions, so the result 
obtained is a very accurate classification. Also notice the stability of the percentages 
achieved with F-kNN when the parameter k varies for large values of N. 

4 Conclusions 

This paper outlines the construction process of the Fisher metric from the choice of 
the probability estimator to the development of a distance expression. Unique from 
any previous work, the Fisher information is derived from sigmoidal output 
estimators, and from this an analytical expression is obtained for the Fisher matrix. 
 In addition, a closed form expression for the geodesic distance is obtained by 
solving the path integral for a linear estimator. This opens the door to a distance 
expression for the general non-linear case by local linearization of the response 
surface of the MLP. Then the free points approach is introduced to find the geodesic 
between points with the new metric and also to ensure that the approximations hold. 
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