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Abstract. Affinity propagation constitutes an exemplar based clustering
technique which reliably optimizes the quantization error given a matrix
of pairwise data dissimilarities by means of the max-sum algorithm for
factor graphs. Albeit very efficient for sparse matrices, it displays squared
complexity in the worst case, hence it is not suited as high throughput
method due to time and memory constraints. We propose an extension
of affinity propagation to patch clustering such that data are treated in
chunks of fixed size with limited memory requirements and linear time.
We test the suitability of the approach for two biomedical applications.

1 Introduction

The increasing size and complexity of modern data sets turns data mining tech-
niques to indispensable tools when inspecting biomedical data. Clustering con-
stitutes one of the most important tasks to allow experts to rapidly get an
overview about essential structure. Thereby, it is very important that clus-
ters can directly be presented to experts in reasonable form. Prototype based
techniques offer one very striking possibility for this purpose since clusters are
represented by prototypes in the original data space; hence they can directly be
inspected in the same way as given data. A variety of excellent prototype based
techniques exist such as the self-organizing map or neural gas [11, 8].

Dedicated data formats and detailed information about the data structures
often cause the need for problem specific similarities or dissimilarities instead
of the standard Euclidean norm. Examples include DNA sequences or protein
structures, biological networks, mass spectra, medical images, database entries
including different types of data, etc. In consequence, standard prototype based
clustering which expects data to be represented as Euclidean vectors cannot be
applied to such settings. As an alternative, data can be represented in terms
of pairwise similarities or dissimilarities given by dedicated distance measures
such as alignments or kernels. A number of clustering techniques which rely on
similarities or dissimilarities only have been proposed such as standard hierarchi-
cal methods, or extensions of prototype based techniques such as pairwise data
clustering with deterministic annealing, median clustering, and relational or ker-
nel variants of neural gas, the self-organizing map, and generative topographic
mapping [7, 3, 5, 6]. Median or exemplar based clusterings restrict prototype
locations to data positions. This has two benefits: standard evaluation measures
as provided e.g. by the quantization error are still well defined in such settings.
In addition, a direct inspection of the prototypes is possible by means of the cor-
responding data points. However, due to the discrete space of the prototypes,
some effort has to be done to arrive at suitable optimization techniques.
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Recently, a very promising method has been proposed [4]: Affinity propaga-
tion (AP) reformulates the quantization error such that it can be formalized as
a factor graph, for which powerful optimization techniques such as the max-sum
algorithm are readily available. Original AP requires all similarities to be given
a priori (missing ones are interpreted as minimum similarity) and it scales, in
the worst case, quadratic in the number of data points. This fact makes the
algorithm unsuitable for large data sets or high throughput analysis. This scal-
ing behavior is shared by many algorithms which rely on pairwise similarities or
dissimilarities since the corresponding dissimilarity matrix has squared size.

A number of approximations to get around this problem have recently been
proposed. On the one hand, kernel approaches can often be speeded up to linear
techniques by means of the Nystrom approximation [13]. However, a good result
requires a representative set of examples, further, an integration into AP is not
possible. As an alternative, patch processing has been proposed in the context of
neural gas and relational neural gas [1, 6] which processes data subsequently in
patches of fixed size, thereby integrating compressed information of all already
seen data in terms of the prototypes. This method has the advantage that it
works very well also if data display a trend, which is often the case for streaming
data or very large data sets. In this contribution, we extend this technique to
AP and we test its suitability in two examples from the biomedical domain.

2 Affinity Propagation

Affinity propagation (AP) constitutes an exemplar based clustering method.
Assume data points v; are characterized in terms of pairwise similarities s;; =
s(v;,v;). Prototypes w; are chosen as exemplars, i.e. w; € {v; |i=1,...,N}.
Every prototype defines its receptive field

R(j) = {vi || s(vi;w;) > s(vi,wyr) for §" # j}

The goal is to find prototypes such that the quantization factor

Eqe ::Z Z s(vg, wy)

J vi€R())

is optimized. AP reformulates this objective in the following form:

qufap = Z S(Ui; w[(i)) + Z 51(1)

%

where the assignment function I assigns a prototype given by an exemplar vy
to every data point v;, and §;(I) punishes invalid assignments, i.e. situations
where I(j) = i but I(i) # 4. This leads to the punishment co in case of in-
valid assignments and d;(I) is 0, otherwise. By taking the assignment according
to the receptive fields, we obtain the quantization factor. This alternative for-
mulation, however, has the benefit that it is no longer necessary to specify the
number of clusters, rather the number is determined by the self-similarities of the
data s(v;,v;) which indicate in how far the point v; is available as a prototype.
Typically, these self-similarities are set to the medium of the given similarities.
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To numerically solve this optimization problem, the function Eqec_ap can be
reformulated as a factor graph which can approximately be optimized by means
of the max-sum algorithm. In turn, responsibilities

rij = sij — max{ai; + sij}
J'#]

and availabilities

a;; = min{0,r;; + Z max{0,ry;}}
i #i,5
Q5 = Z maX{O, Ti’i}

i

are determined leading to assignments [(i) = argmax;(a;; + 7i;) [4].

3 Patch Affinity Propagation

Patch processing processes data consecutively in patches of small size m. All
already visited data are compressed by means of prototypes. These serve as
additional inputs to the next patch, counted with their respective multiplicities
as given by the size of their receptive fields. For this purpose, an extension of the
clustering method which takes into account multiple points is necessary. Since
all data are taken into account this way, processing of data sets which are not
i.i.d. is possible. This procedure has been proposed for vectorial neural gas in
[1] and relational neural gas for dissimilarity data in [6].

We extend AP towards patch clustering, resulting in patch affinity propa-
gation (PAP). Since AP constitutes an exemplar based clustering method, the
transfer of the meta algorithm is immediate: we just repeatedly apply AP to
a given patch and the exemplars as provided by the previous patch, counted
with multiplicities. This meta-algorithm is denoted in Fig. 1. Obviously, the
algorithm visits only a linear subset of the full similarity matrix, whereby the
exact parts depend on the found exemplars. This way, a linear time and limited
memory algorithm is obtained provided access to the similarities is O(1). In
practical applications, it is often the case that the full dissimilarity matrix is not
given anyway, rather data are represented in some form (such as e.g. DNA se-
quences in a database in bioinformatics applications), and a method to compute
dissimilarities given two data points is available (such as sequence alignment
for DNA sequences). PAP offers an ideal solution for such setting: Since only
a subpart of the matrix is necessary, only a small fraction of the dissimilarity
matrix has to be computed on the fly while performing the algorithm.

To apply patch processing to AP, we need to extend AP such that it can deal
with data points which are contained in the training set more than once (multiple
data points). One simple way to do so would exist in a simulation of the update
equations provided by standard AP, where points are directly included in the
updates according to their multiplicities. Unfortunately, this procedure is not
possible, since several exactly identical data points prevent convergence of AP —
the intuitive reason being that the algorithm cannot decide which point in a set
of exactly identical points should become the exemplar.
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init exemplars E = (), patch number p = 1
repeat
compute patch of size m: Py, = {s(vi,v;)} |p-m <i,5<(p+1)-m}
compute similarities patch - exemplars:
P gl = {s(vi,v5) [p-m<i< (p+1)-m,v; € B}
compute similarities of exemplars: Pig| g = {s(vi,v;) | vi,v; € E}
L Pm,m Pm,\E\
el < Prim Poie
init diagonal entries of P
set multiplicities according to E if v; € E
set multiplicities to 1 for v; ¢ E
perform patch clustering with multiplicities for P
— this yields new exemplars E
set multiplicities in F as size of the receptive fields (with multiplicities)

Fig. 1: Principled algorithm for patch clustering

Thus, we use the following observation to extend AP to multiple points: if
data point v; is contained in the data set m; times, the cost function becomes

Eqe = Z m; - s(vi, wj)

i,j:0; €R(J)

Obviously, this cost function is obtained if the original similarities s(v;,v;) are
substituted by m; - s(v;,v;). Hence we simply use these products of similarities
and multiplicities in the update equations for the responsibilities as computed
in AP. Note that the resulting AP algorithm tries to optimize a cost function
which has the same global optima as the one beforehand. The exact behavior of
the resulting AP algorithm is not identical to the original AP algorithm applied
for multiple points, in particular convergence is given for the former case.

The initialization of the diagonal terms should also be adapted accordingly,
putting a bias towards points with large multiplicities. We achieve this by a
division of the preferences along the diagonal by the respective multiplicities.
Obviously, PAP converges since AP does. However, unlike AP, the full procedure
can no longer be interpreted as optimization of one cost function due to the
iterative approach, rather an approximation thereof. Note that it is not necessary
to randomly permute data when using PAP since already seen data are always
incorporated in compressed form by means of the prototypes. See [1] for a
demonstration of the suitability of patch clustering for non i.i.d. data sets.

4 Experiments

We test the algorithm for two data sets stemming from biomedical applications.
In both cases, data are labeled such that we can evaluate the performance of the
algorithms in terms of the classification error:

e The Copenhagen Chromosomes data constitute a benchmark from cytoge-
netics [9]. 4,200 human chromosomes from 22 classes (the autosomal chro-
mosomes) are represented by grey-valued images. These are transferred
to strings measuring the thickness of their silhouettes. These strings are
compared using edit distance with insertion/deletion costs 4.5 [12].
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e The vibrio data set consists of 1,100 samples of vibrio bacteria populations
characterized by mass spectra. The spectra encounter approx. 42,000 mass
positions. The full data set consists of 49 classes of vibrio-sub-species.
The mass spectra are preprocessed with a standard workflow using the
BioTyper software [10]. As usual, mass spectra display strong functional
characteristics due to the dependency of subsequent masses, such that
problem adapted similarities such as described in [2, 10] are beneficial. In
our case, similarities are calculated using a specific similarity measure as
provided by the BioTyper software [10].

In both cases, we report the results of a ten fold cross-validation with 10 repeats.
We compare to relational neural gas (RNG) and patch relational neural gas
(PRNG) as presented in [6]. The space and time complexity of PAP and PRNG
is comparable (linear for the time complexity and constant for the memory
requirement). Implementing different optimization techniques for the clustering
objective, their suitability is different depending on the structure of the data,
AP being more appropriate for possibly multimodal clearly separated clusters,
while NG is better suited for noisy data. The parameter choices are as follows:

o Affinity Propagation (AP): self-similarities are set by binary search such
that a fixed number of exemplars is appropriately obtained, starting from
the median, where the number of clusters is comparable to the number
used for the alternative methods. (We accept partial deviations thereof,
an exact fit of a given number of clusters often requiring additional trials.)
Adaptation is done until convergence is observed.

e Patch Affinity Propagation (PAP): patch size is 100 and we use the same
strategy to determine the self-similarities as AP.

e Relational Neural Gas (RNG): we use a fixed number of neurons K, and an
exponential annealing schedule for the neighborhood range starting from
K /2. 100 epochs are used for training.

e Patch Relational Neural Gas (PRNG): we use the same parameters as
RNG for each patch, and patch size 100. The number of coefficients used
for the k-approximation of the prototype vectors is set to & = 10.

We use the standard double centering to transform similarities to dissimilarities
since NG requires dissimilarities rather than similarities, as AP. Prototypes are
labeled using posterior labeling according to majority vote on the training data.

The results of the algorithms are displayed in Tab. 1. Since patch clustering
relies on a small subset of the full information, it can be expected that it leads
to information loss which depends on the data characteristics and the algorithm.
Interestingly, depending on the data characteristics, this loss is not very severe
such that patch clustering can be seen as a valid alternative if time and memory
constraints are given, or data cannot be processed at all due to its size. For the
Chromosomes data, PAP leads to a decrease of the classification accuracy by
more than 10% compared to AP, while PRNG and RNG display both a quite
respectable accuracy of about 90%. In contrast, AP and PAP display results
close to 100% for the Vibrio data set. Here, AP displays very good results since
it reliably finds exemplars which represent the well separated clusters present in
the data. The same holds for the PAP approximation albeit in much less effort.
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Classification Accuracy | Clusters

Chromosome

AP 0.895(0.006) K =58
PAP 0.755(0.008) K =66
RNG 0.910(0.004) K =60
PRNG 0.879(0.018) K =60
Vibrio

AP 0.999(0.000) K =49
PAP 0.999(0.000) K =53
RNG 0.894(0.008) K =50
PRNG 0.887(0.028) K =50

Table 1: Results on the Chromosomes and Vibrio data set, the standard devia-
tion is shown in parenthesis

5 Conclusions

We extended AP to patch clustering such that a linear time constant memory
algorithm results, which seems particularly suited for large data sets where a
comparably well cluster separation can be observed. Further tests for large size
benchmarks are the subject of ongoing work.
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