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Abstract. This paper derives robust stability conditions for neural network control 
of sampled-data systems whose parameters are uncertain. The controllers are 
nonlinear, full state regulators implemented as single hidden layer, feedforward 
neural networks. The controlled systems must be locally controllable and full-state 
accessible. The robust stability is confirmed by the existence of a Lyapunov 
function of the closed loop systems. A modified backpropagation algorithm with a 
model reference technique is employed to determine the weights of the controllers. 
Simulation results on the classical motor-driven inverted pendulum model are 
presented to demonstrate the applications of these conditions.

1 Introduction

Neural networks (NNs) have been proposed for use in a broad range of control 
applications [1]-[2]. Nowadays, there are many approaches used to design a neural 
network controller (NNC) [3]-[6]. Regardless of the design approach, the stability of 
the control system needs to be systematically verified. Moreover, the problem 
becomes more complex when any parameter of the system is uncertain.  The control 
system that remains stable in the presence of the uncertainty is said to be robustly 
stable.

A robustifying control methodology using high-order NNs was proposed by 
Rovithakis [7]. In his approach, a nominal controller was first designed to guarantee a 
desired control performance for the nominal system. The NN was then trained to 
approximate the nonlinear terms that were not included in the nominal model. The 
parameters of the trained NN were employed to form the augmented adaptive control 
signal, which actually robustified the nominal system. Kuntanapreeda and Fullmer 
[9], [10] presented stability sufficient conditions for a class of NN control systems. 
The controller was a single hidden layer feedforward NN, with linear output functions 
at the output neurons. The controlled nonlinear system was restricted to be locally 
hermitian, which was later removed in [11]. The stability conditions were for 
nonadaptive applications. A modified backpropagation training algorithm for 
adjusting the weights of NNCs was also proposed in [9]. This modified algorithm 
imposed the stability conditions as training constraints, so the stability of the NN 
control systems is guaranteed.

In this paper, we extend the works in [9]-[11] by deriving robust stability 
conditions for NN control of sampled-data nonlinear systems, whose parameters are 
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uncertain. The modified backpropagation algorithm proposed in [9] is also used here 
for training NNCs to satisfy with the new conditions. 

2 Neural Network Control Systems

Consider NN control systems comprising a nonlinear system with parameter 
uncertainties and a feedforward NN closing the feedback loop as shown in Fig. 1

2.1 Controlled Systems with Parameter Uncertainties 

We consider nonlinear uncertain systems of order n with the state-space model
( )
( )δ

δτττ
,0,0G0

),(u),(xG)(x
=
=∂

                                             (1a)

where ∂ denotes the differentiation operator for continuous-time systems, or the shift 
operator for sampled-data systems, τ is the time-step k  for sampled-data systems, 

nx ℜ∈  is the state vector with initial condition 0x , mu ℜ∈  is the input vector, and 
pℜ∈δ  is an uncertain parameter vector. It is assumed that the systems can be 

modeled as linear uncertain systems   
[ ] )(uB)(xAA)(x 0110 ττατ ++=∂ .                                    (1b)

Here nn
0A

×ℜ∈ and mn
0B

×ℜ∈  are a nominal constant system and input matrices, 

respectively. The system’s uncertainties are represented by nn
1A

×ℜ∈ , and ℜ∈1α

where +ℜ∈≤ µα1 .  The pair )B,A( 00  is assumed to be controllable.
Remark 1: In (1b), 0A  and 0B , respectively, can be found by computing the 

Jacobian matrices of ( )•G  with respect to )(x τ  and )(u τ  evaluated at the 
equilibrium point.  Also, 1A  and 1α , as well as µ , can directly be estimated from 

( ) [ ])()(),(),()(1 kuBkxAkukxGkxA 001 +−= δα .                        (2)

Fig. 1.  Neural network control of Sampled-data systems.
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2.2 Neural Network Controllers 

We consider nonlinear uncertain systems of order n with the state-space model.
The controllers are full state regulators implemented as single hidden layer 

feedforward NNs with a linear output layer. The hidden layer consists of p nonlinear 
neurons whose activation functions are hyperbolic tangent. Let np

1W ×ℜ∈ and 
pm

2W ×ℜ∈ be the weight matrices in the hidden layer and the output layer, 
respectively.  The control law can then be written in the form

( ) ( ))hFW)(xWFW)(u 212 == ττ   (3)
where )h(F  is a p-vector function whose ith component is )htanh()h(f iii = .

3 Robust Stability Conditions

The proofs of robust stability are achieve d by showing the existence of Lyapunov 
functions of the closed loop control systems [11], [12].
Proposition : The sampled-data control system, as shown in Fig. 1, consisting of 

the uncertain system (1) with the neural network control law (3) is equilibrium stable 
in the presence of the uncertain parameter δ  if there exists a positive symmetric 
definite matrix nnP ×ℜ∈ and a matrix pp×ℜ∈Γ , a matrix pnq ×ℜ∈  such that

( )[ ] [ ] ( ) 1
T
1

T
1200

T
1200 PAA1qqQPWWaBAPWWaBA1 µµµ +−−−=−+++ (4a)         

[ ] 20
T
1

TT
120

T
1200 WPBAqWWPBWWaBA µΓ −−−=+     (4b)

T
20

T
0

T
2 I2WPBBW ΓΓ−= (4c)                                                                                                                                                               

where +ℜ∈a is less than one, nnQ ×ℜ∈  is a positive symmetric definite matrix, and 
I  is the identity matrix of dimension p.
Lemma 1: For any nxn

1,~ ℜ∈ΑΑ and any positive symmetric definite matrix 
nxnℜ∈Ρ  the following matrix inequality holds:

1
T
1

TT
11

T AAA~PA~A~AAA~ ΡΡΡ +≤+ .                                   (5)
Proof:  For all 0kk > , let the uncertain sampled-data system be given as (1) with 

the NNC (3) and assumed P , q , and Γ satisfy (4). Consider the following Lyapunov 
function candidate:

)k(Px)k(xV T= .
Using (2) and (3), the time difference of V along the state trajectory of the control 
system is

[ ] [ ]
).()(

)()()()(

)()()1()1(
)()1(

11

kPxkx
)kxF(WWBk)xA(AP)kxF(WWBk)xA(A
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−
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For convenience, we will drop the time step k of )k(x . 
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where xWh 1= and haF(h)(h)F~ −= . It is convenient to define 1200 WWBaAA~ += . 
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By Lemma 1 and µα ≤1 , we obtain
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Using (4) yields
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Thus, following the same argument as in Proposition 1 [13], we have 0dV ≤ . 
Therefore, V  is a Lyapunov function of the control system and the control system is 
equilibrium stable.    

4 Simulation result

Consider a sampled-data system which is obtained by sampling the motor-driven 
inverted pendulum









+−

=
u10xxsin

x
dt
xd

21

2

δ
                             (6)

with a sampling rate of 0.05 second. Here, 2x ℜ∈ is the state vector, ℜ∈u  is the 
input, and [ ]2.2,8.1∈δ is the uncertain parameter of the system.  The approximate 
difference equation for the system (6) with a constant input at each time step can be 
simply written using Euler’s formula as









+−+

+
=+

))k(u10)k(x)k(xsin(05.0)k(x
)k(x05.0)k(x

)1k(x
211

21

δ
.                     (7)

By following the same procedure as in Example 1, we obtain the model (1b) of the 
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system (7) as

)k(u
50.0
01.0
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)1k(x 1 
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where 1.01 ≤α  and  the trained weights and related matrices are found to be
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05625793.001047819.197337314.048901040.0
61207556.055640354.058978048.083442536.0
77640411.051450794.023033026.098742458.0
51542845.069814220.093229043.040952492.0

Γ .

In Fig. 3, the solid line represents the contour of dV  for the existing Lyapunov 
function, whereas the dashdot line corresponds to the other Lyapunov function of the 
case without uncertainty. The lines separate the positive and negative regions of dV .  
From this figure, we observe that the Euclidean balls of radius 5.8 and 3.6, which lie 
within the regions where  dV  < 0, are estimates of the regions of stability for the 
corresponding NN control systems. The stability region, when employing the robust 
stability condition (4), is noticeably larger than that of the other.  The comparison of 
the system responses between two NN control systems and the reference model is 
shown in Fig. 2

.

Fig. 2 :  Control responses, )t(x1  and )t(x2 . Fig. 3 :  Contour plot of dV .
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5 Conclusion

Robust stability conditions for neural network control of uncertain sampled-data 
nonlinear systems have been derived in this paper. A modified backpropagation 
algorithm imposed the derived stability conditions as the training constraints are used 
to adjust the weights of the NNCs. The robust stability is achieved by showing the 
existence of a Lyapunov function of the closed loop systems. By evaluating the 
existing Lyapunov functions to obtain the finite region of stability, we found that the 
stability regions, when employing our new robust stability conditions, are visibly 
larger than when using the other stability conditions that do not include the 
uncertainties. The simulation results show satisfactory control responses and are 
consistent with the derived conditions.
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