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Abstract. Hyperspectral imaging has been proven to be a viable tool
for automated food inspection that is non-invasive and on-line capable. In
this contribution a hardware implemented Self-Organizing Feature Map
with Conscience (CSOM) is presented that is capable of on-line adaptation
and recall in order to learn to classify green coffee varieties as well as
coffee of different roast stages. The CSOM showed favourable results in
some datasets compared to a number of classical supervised neural network
classifiers. The massive parallel neural hardware architecture allows for
constant processing times at different map sizes.

1 Introduction

Quality control of coffee products, from basic green coffee to the finished roasted
coffee by hyperspectral imaging has been shown to offer the means for a non-
invasive, on-line and automated screening method to control large product quan-
tities [1, 2]. For example green coffee has to be sorted for various defects to the
bean or the stability of the finished product has to be evaluated. In order
to characterize these materials beyond their colour and shape, their narrowly
sampled spectrum in the short wave infra-red (SWIR) range is collected using
hyperspectral imaging. Each pixel of an acquired image contains a full spec-
trum which is characteristic for the material’s chemical composition and forms
a high-dimensional data vector or pattern. Due to the spatial resolution, loose
materials like coffee can be inspected spatially for sorting purposes.

For classification an Artificial Neural Network is learnt from exemplary data.
In order to be able to teach the system as well as recall from the model in real-
time an implementation in integrated hardware is desirable. This opens the
possibility of integrating the data analysis within the camera hardware for a
smart camera set-up. In this contribution we present a hardware accelerated
implementation of the Self-Organizing Feature Map with Conscience [3, 4, 5, 6].
A post-labeled CSOM was used to classify green coffee beans as well as beans
of varying roasting degrees. The classification accuracy is benchmarked to other
prototype based Neural Networks like Radial Basis Function (RBF) Network,
Generalized Relevance Learning Vector Quantization (GRLVQ) [7] and Super-
vised Relevance Neural Gas (SRNG) [8]. Additionally, a Multilayer Perceptron
(MLP) Network and a Support Vector Machine (SVM) were trained as compar-
ison.

2 Data Acquisition

Coffee beans of each class were recorded separately. Beans and a standard optical
PTFE (polytetrafluoroethylene) calibration pad were positioned on a translation

627

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.



table. Hyperspectral images were recorded using a HySpex SWIR-320m-e line
camera (Norsk Elektro Optikk A/S). Spectra are from the short-wave infra-
red range (SWIR) of 970 nm to 2,500 nm at 6 nm resolution yielding a 256
dimensional spectral vector per pixel. The camera line has a spatial resolution
of 320px and can be recorded with a maximum frame rate of 100fps. Radiometric
calibration was performed using the vendors software package. Coffee beans were
segmented from background via Neural Gas clustering. Dataset A comprised of
four different green coffee varieties, two varieties of Arabica and two varieties
of Robusta. Dataset B and C comprised of Robusta and Arabica coffee at five
different roasting stages. Recordings of a rubber conveyor belt served as the
background class. All spectra were normalized to unit length.

3 Self-Organizing Feature Map with Conscience

The CSOM algorithm extends the distance calculation of classical Self-Organizing
Feature Maps [9] by a neuron specific offset value g. This bias value gi (the con-
science of neuron i) is permanently adapted and holds the winning neuron off
to win the competition for being the best match in a short time again [3]. As a
result a magnification factor of ρ = 1 can also be reached for higher dimensional
data [6]. The magnification factor ρ describes the relation between the point
density D() of the neuron prototypes (SOM weights (w), receptive field centres)
in the input space and the probability density function P () of the stimuli data as
D(w) ∝ P (w)ρ [5, 6]. A magnification factor of ρ = 1 leads to a maximization of
the implied information in the trained lattice and makes the CSOM well suited
for handling sparsely presented clusters.

Except the conscience g of the neurons, identifying the winning neuron as
minimum of the p-norm distance between the input stimulus and the receptive
field center is equal to classical Self-Organizing Feature Maps (Eq. 1). The
calculation specification for the individual bias value can be seen in Eq. 2. The
parameter γ is one of three user parameters to influence the training data flow.
All user controlled parameters (α, β, γ) have to decrease during the training in
order to strengthen already learned informations.

‖x(t)−wc(t)‖p − gc(t) < ‖x(t)−wi(t)‖p − gi(t) ∀i �= c (1)

gi(t) = γ(t)

(
1

l
− Fi(t)

)
(2)

Fi(t) = Fi(t− 1) + β(t− 1)(yi − Fi(t− 1)) (3)

wi(t+ 1) = wi(t) + hc,i(t)[x−wi]; hc,i(t) =

{
α(t) if ‖rc − ri‖p ≤ 1
0 if ‖rc − ri‖p > 1 (4)

The value l represents the number of neurons in the lattice and is constant during
runtime. The other inner parameter next to gi is the winning frequency Fi (Eq.
3) depending on β and the value yi. The value yi is 1 for the winning neuron wc

and 0 for all other neurons. As can be seen in equation Eq. 4, within a learning
step the neighborhood function of the CSOM uses a constant α value which
leads to a good-natured self organizing feature map for hardware acceleration.
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Fig. 1: Principle of the hardware accelerator consisting of a number of processing
elements (PEs) to simulate the Self-Organizing Feature Map. The embedded
local controller translates macro commands to control signals for the processing
elements. An additional cache structure is used to store the incoming spectra
from the camera and to provide the learning parameter.

4 Hardware Realisation

The realized hardware accelerator is capable for conscience SOM calculation as
well as classical Self-Organizing Feature Map calculation. The hardware acceler-
ator depends on the highly flexible gNBX core [10] extended by control logic for
conscience and classical SOM, cache structures for data and adaptation value
management and an additional communication interface to connect the acceler-
ator to the host system (see Fig. 1). The gNBX core itself is a generic designed
artificial neural net core, which is fully written in VHDL. Inside the core is a
n × m lattice of massive parallel processing elements each capable to simulate
one or more artificial neurons through resource sharing operations. The main
features of the processing elements are the adjustable calculation accuracy and
the embedded hardware multipliers for the p1 and p2 distance metric as well as
the local memories for the synaptic neuron circuits and the pipelined data path
structure.

Due to the high similarity between the inner parameter calculation shown
in Eq. 2 and Eq. 3 and the neurons weights update calculation for classical
Self-Organizing Maps (identical to Eq. 4), the conscience algorithm has been
implemented by adding additional registers and by ensure correct signed calcu-
lations. The additional registers are necessary to store the user parameters β
and γ and the neurons conscience g which causes the need of signed calculations.
The permanently updated winning frequency is stored inside the local memory
so that the needed memory space for one neuron increases to dimr + dimw + 1
instead of dimr + dimw for classical SOM. Whereas dimr is the dimension of
the neuron lattice and dimw is the number of synaptic circuits.

For the classification of a spectrum a calculation accuracy of 16 Bit is used
with the ability of up to seven neurons per processing element (2048 local ad-
dresses) mapped on a single Xilinx Virtex4FX100 FPGA. Through this con-
figuration up to 100 processing elements fit to the Virtex4 each using about
≈ 310 Slices, 1 embedded multiplier and 2 block ram memories. The work-
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Table 1: Mean quantisation error and topographic error for the hard- and soft-
ware implementation (training set); averaged across cross-validations; standard
deviations in brackets.

mean quantisation error
Method Map Size Dataset A Dataset B Dataset C
HW CSOM 15x1 0.192 (0.003) 0.240 (0.007) 0.243 (0.008)
SW CSOM 15x1 0.184 (0.001) 0.225 (0.002) 0.226 (0.002)
HW CSOM 50x1 0.166 (0.001) 0.187 (0.001) 0.189 (0.002)
SW CSOM 50x1 0.167 (0.000) 0.183 (0.001) 0.184 (0.000)

topographic error
Method Map Size Dataset A Dataset B Dataset C
HW CSOM 15x1 0.010 (0.005) 0.039 (0.022) 0.036 (0.016)
SW CSOM 15x1 0.000 (0.000) 0.026 (0.007) 0.027 (0.015)
HW CSOM 50x1 0.065 (0.012) 0.077 (0.010) 0.076 (0.010)
SW CSOM 50x1 0.051 (0.007) 0.051 (0.007) 0.072 (0.018)

ing frequency of the hardware accelerator is 50 MHz using the RAPTOR-X64
Prototyping System [11] as test environment.

5 Machine Learning

For the CSOM, a post labelling approach yielded a class label per neural weight
vector. The most frequent class label of all best matching data vectors per
weight vector was kept. The CSOM was trained with a 1D map of 15 neurons
as well as 50 neurons. A 2D map was trained as well but rejected due to its high
topographic error. As comparison, a CSOM implementation with and without
OpenMP optimization was run on an Intel Core i7 950 Quad Core processor at
3.07 GHz. For evaluation the topographic and quantisation error were calcu-
lated. Topographic error is the proportion of all data vectors for which first and
second best matching units are not adjacent units.

The MLP and RBF were set with 20 neurons in the hidden layer and trained
with conjugate gradient with momentum term and 1ofN coding of labels at their
output. Standard GRLVQ and SRNG were trained with stochastic gradient and
4 neurons per class. Learn rate decreased over time. Finally a C-SVM with
linear kernel was used as well. Other kernels were considered but yielded poorer
accuracy.

Dataset A was a 5 class problem, datasets B and C were 6 class problems.
For each class, 2000 samples where randomly chosen from the original data.
Each dataset was divided according to a 10-fold cross-validation and 10 separate
classification models were learned and their training and test accuracy averaged.

6 Results

In Table 1 the mean quantisation error and topographic error for the hardware
(HW) and software (SW) CSOM are shown. Topographic error is small and
quantisation error is comparable between map sizes. These results show that
the hardware implementation with fix point arithmetic has created a comparable
model in terms of quality to a software implementation.
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Table 2: Test accuracy of classification; averaged across cross validations; stan-
dard deviation in brackets.

Method Dataset A Dataset B Dataset C
HW CSOM 1x15 0.509 (0.014) 0.813 (0.019) 0.803 (0.026)
SW CSOM 1x15 0.506 (0.013) 0.826 (0.018) 0.803 (0.018)
HW CSOM 1x50 0.559 (0.019) 0.893 (0.015) 0.885 (0.015)
SW CSOM 1x50 0.555 (0.013) 0.904 (0.008) 0.891 (0.013)
RBF 0.962 (0.008) 0.946 (0.010) 0.917 (0.011)
MLP 0.435 (0.041) 0.722 (0.045) 0.661 (0.043)
GRLVQ 0.548 (0.022) 0.813 (0.025) 0.725 (0.016)
SRNG 0.684 (0.010) 0.812 (0.012) 0.873 (0.007)
SVM 0.969 (0.007) 0.966 (0.005) 0.944 (0.009)

Table 2 shows the classification results for all used classifiers. Average test
accuracy and their standard deviation across the 10-fold cross-validation are
shown. The RBF and SVM classifier show a robust performance across datasets.
SRNG and GRLVQ show good results on Dataset B and C but poor results on
Dataset A. The MLP shows average results across all Datasets. It is apparent
that the CSOM performs equally in hardware and software at the level of the
supervised approaches of the SRNG and GRLVQ at comparable map size of
1× 15 and can increase performance with the 1× 50 map in Dataset B and C.

Finally Table 3 compares the processing speed of the hardware CSOM with
an efficient software implementation (with OpenMP) on general purpose hard-
ware with map sizes of 1× 15 and 1× 50. Processing times cover only the calcu-
lation of the best matching unit from one data vector and the adaptation of all
weight vectors. Data transfer time as well as the time for data pre- and post-
processing were not considered and would depend on the final system realisation.
In this paper we focus on the ability of the system to label the hyperspectral
image pixelwise in tune with the maximum framerate possible. The HySpex
SWIR-320m-e line camera produces 100 × 320 spectra per second. In order to
label the image on-line, the theoretical processing time per spectra is 31.25μs.
The processing times in Table 3 show that a hardware CSOM and an efficiently
implemented software CSOM, if it is run on a top of the line desktop processor,
can be used to label as well as learn the Self-Organizing Feature Map on-line.
The massive parallel CSOM hardware has the advantage that processing times
did not grow with larger map size as they were for the software implementation.

7 Conclusion

We have shown that a CSOM implemented on a hardware accelerator, which
can be integrated efficiently into a hyperspectral camera system, is suitable to
classify spectral data in this case for coffee sorting purposes but still lacks a
level of robustness to changing sorting tasks. Furthermore the on-line adapta-
tion speed opens the possibility to teach the system on-line in order to build a
model from the incoming data and label them to their identity. We compared
the classification performance to a number of other prototype based neural net-
work architectures and found that a Radial Basis Function Network approach
showed the most robust results in the classification task. In future work, the
hardware accelerator will be adopted to supervised approaches. The integration
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Table 3: Processing time measurements for the Hardware CSOM and an efficient
software implementation on a Intel Core i7 950 Quad Core processor at 3.07GHz;
Massive parallel neural hardware shows its advantage at increasing map sizes;
Processing time for one spectral vector; averaged across a 1000 samples.

Method Map best match best match &
Dimension (µs) weight update (µs)

HW CSOM 15x1 6.62 12.08
HW CSOM 50x1 6.62 12.08
SW CSOM 15x1 29.75 35.67
SW CSOM (OpenMP) 15x1 4.36 7.16
SW CSOM (OpenMP) 50x1 12.08 14.66

of efficient neural network processing hardware that is capable of dealing with
the complexity of the high-dimensional spectral pattern adaptively to the task
at hand will be important for the creation of smart camera systems. These can
be used as stationary or mobile systems with applications in food inspection,
medical diagnostics or smart farming.
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