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Abstract. We propose and investigate two information-based measures
of statistical dispersion of neuronal firing: the entropy-based dispersion
and Fisher information-based dispersion. The measures are compared with
the standard deviation. Although the standard deviation is used routinely,
we show, that it is not well suited to quantify some aspects of dispersion
that are often expected intuitively, such as the degree of randomness. The
proposed dispersion measures are not entirely independent, although each
describes the firing regularity from a different point of view.

1 Introduction

Information-based measures of signal regularity or randomness have recently
gained popularity in various branches of science, see e.g., [1, 2]. In this paper,
we construct dispersion-like quantities based on these information measures and
apply them. In particular, we continue the effort initiated in [3, 4] by taking
into account a variant of Fisher information, which has been employed also in
different contexts [2, 5].

Although standard deviation is used ubiquitously and is almost synonymous
to the “measure of statistical dispersion”, we show, that it is not well suited to
quantify some aspects of spiking regularity that are often expected intuitively
[3, 6]. For example, the diversity or randomness of the interspike intervals is
better described by entropy-based or Fisher information-based dispersions.

We show, that the main difference between the descriptions by means of
entropy or Fisher information, lies in the fact that the Fisher information de-
scribes how “smooth” the distribution is, while the entropy describes how “even”
it is. The “smoothness” and “evenness” might be at first considered as inter-
changeable, but we show in detail that it is not the case. The illustration of
the proposed methods is provided on simple and frequently employed models of
stationary neuronal activity, given by exponential, gamma and inverse Gaussian
distributions of interspike intervals (ISI).

2 Methods

The probabilistic description of ISIs results from the fact, that the positions
of spikes usually cannot be predicted exactly, only the probability that a spike
occurs is given [7]. Therefore there is a common approach to the spiking neuronal
activity by describing it as a stochastic point process. The prominent role among
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these processes is played by so called stationary renewal point process. Then
the ISIs can be exclusively described by the continuous positive random variable,
denoted as T and this situation is considered here.

Statistical dispersion is a measure of “variability” or “spread” of the distri-
bution of the random variable T . The measure has the same physical units as
T . By far, the most common measure of dispersion is the standard deviation,
σ, defined as the second central moment of the distribution. The corresponding
relative dispersion is known as the coefficient of variation, cv,

cv =
σ

E (T )
, (1)

where E (T ) is the mean value of T . Standard deviation (or cv) measures es-
sentially how off-centered is the distribution of T and its value is sensitive to
outlying values [8, 9]. On the other hand, σ does not quantify how random,
or unpredictable, are the outcomes of r.v. T . Namely, high value of σ (high
variability) does not indicate that the possible values of T are distributed evenly
[3].

The randomness of a probability distribution can be defined as the measure
of “choice” of different outcomes that are possible. For discrete probability
distributions such measure is provided by the Shannon entropy, which is known
to be a unique measure consistent with some natural requirements [10]. For
continuous variables, however, the value of Shannon entropy diverges, therefore
the following measure of randomness was proposed in [11]

σh = exp

[
−
∫ ∞

0

f(t) ln f(t) dt

]
, (2)

where f(t) is the probability density function of random variable T . The in-
terpretation of σh relies on the asymptotic equipartition property theorem and
the entropy power concept [12, 11]. Informally, the value of σh is bigger for
those random variables, which generate more diverse (or unpredictable) realiza-
tions. Analogously to Eq. (1), we define the relative entropy-based dispersion
coefficient, ch, as

ch =
σh

E (T )
. (3)

The Fisher information measures the minimum possible error in estimating
a parameter of a distribution. In a special case of the location parameter, the
Fisher information J(T ) does not depend on the parameter itself, and can be
expressed directly as a functional of the density f(t) [12, p.671],

J(T ) =

∞∫
0

[
∂ ln f(t)

∂t

]2
f(t) dt. (4)

The value of J(T ) is small for smoothly-shaped probability densities. Any locally
steep slope or the presence of modes in the shape of f(t) increases J(T ) [2]. Due
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to the derivative in Eq. (4), certain regularity conditions are required on f(t).
In this paper, we assume that f(t) is continuously differentiable for all t > 0 and
furthermore f(0) = f ′(0) = 0 [13]. The units of J(T ) correspond to the inverse
of the squared units of T , therefore we propose the Fisher information-based
dispersion measure, σJ , as

σJ =
1√
J(T )

. (5)

Any “non-smoothness” in the shape of f(t) decreases σJ . In analogy with
Eqns. (1) and (3) the relative dispersion coefficient cJ can also be defined,

cJ =
σJ

E (T )
. (6)

3 Results

We choose three widely employed statistical models of ISIs: gamma [14, 15],
inverse Gaussian [15, 16] and lognormal distributions [15], and analyze them by
means of the three described dispersion coefficients cv, ch and cJ .

The probability density function of the gamma distribution, parametrized by
shape parameter k and scale parameter θ, is

f(t) =
tk−1 exp{−t/θ}

Γ(k) θk
, (7)

where Γ(z) is the gamma function. The mean value of the distribution is E (T ) =
k θ and the coefficient of variation is equal to

cv = 1/
√
k. (8)

By parametrizing the density (7) by cv and substituting it into Eqns. (3) and (6)
we obtain the entropy-based and Fisher information-based dispersion coefficients
as functions of cv,

ch = c2v Γ(c
−2
v ) exp

{
1 + (c2v − 1)Ψ(c−2

v )

c2v

}
, (9)

cJ = cv
√

1− 2c2v for 0 < cv <
1√
2
, (10)

where Ψ(z) = d
dz ln Γ(z) is the digamma function [17]. Note, that the gamma

density is not differentiable at t = 0 for cv ≥ 1/
√
2, thus cJ is evaluated only for

0 < cv < 1/
√
2.

The inverse Gaussian distribution describes the spiking activity of a stochas-
tic variant of the perfect integrate-and-fire neuronal model [7, 18]. Its probability
density function, parametrized by mean, μ = E(T ) , and scale parameter, σ, can
be expressed as

f(t) =
1√

2πσ2t3
exp

{
− (t− μ)2

2σ2μ2t

}
. (11)
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The coefficient of variation is equal to

cv =
√

μσ2 (12)

and the other dispersion coefficients can be expressed as

ch =
√
2π cv exp

{
1

2
− 3 exp(c−2

v )K(1,0)
(
1
2 , c

−2
v

)
√
2π cv

}
, (13)

cJ =

√
2 cv√

2 + 9c2v + 21c4v + 21c6v
, (14)

where K(1,0)(ν, z) is the derivative of the modified Bessel function of the second
kind, K(1,0)(ν, z) = ∂

∂νK(ν, z) [17].
The lognormal probability density function, parametrized by mean, μ, and

standard deviation, σ, of variable lnT , is

f(t) =
1√

2πσ2 t
exp

{
− (ln t− μ)2

2σ2

}
. (15)

Using this parametrization, the mean of the lognormal distribution is E (T ) =
exp

{
μ+ σ2/2

}
and the coefficient of variation is equal to

cv =
√

exp (σ2)− 1. (16)

The two other dispersion coefficients, expressed as functions of cv, are

ch =
√
2πe

√
ln(1 + c2v)

1 + c2v
, (17)

cJ =

√
ln(1 + c2v)

[1 + c2v]
3[1 + ln(1 + c2v)]

. (18)

By using these three statistical descriptors of interspike intervals, we can
show how similar or different are the measures given by Eqns. (1), (3) and (6).
The dependence of ch on cv is shown in Fig. 1a, the dependence of cJ on cv
is shown in Fig. 1b. The dependencies are not linear (even not monotonous)
and thus neither ch nor cJ are equivalent to cv. We see, that both ch and cJ
as functions of cv show a “∩” shape with maxima around cv

.
= 1 (for ch) and

around cv
.
= 0.5 (for cJ). Note, that the plots of cJ against cv appear like a

scaled version of the plots of ch against cv, with the relative positions of the
curves preserved (to a certain extent). In particular, while ch of the lognormal
is always greater than ch of the inverse Gaussian, the ordering is reversed for
cJ when cv > 2.2. Furthermore, the maxima of ch and cJ occur for different cv
values, confirming that each of the proposed dispersion coefficients provides a
different point of view.
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Fig. 1: Entropy-based dispersion coefficient, ch, in dependence on the coefficient
of variation, cv, for three ISI distributions (a): gamma, inverse Gaussian and
lognormal distribution. Both cv and ch describe “spread” of the interspike inter-
vals, but from different points of view. Coefficient of variation, cv, quantifies how
off-centered is the mass of the probability density function, whereas ch indicates
how evenly is the mass distributed over all possible values. Fisher information-
based dispersion coefficient, cJ , as a function of the coefficient of variation, cv
(b). The graph confirms that “smoothness” (given by cJ) and “evenness” (ch)
of the distribution are different notions. Still, there are qualitative similarities:
cJ = 0 for cv → 0 for all shown distributions, and cJ = 0 as cv → ∞ for both
lognormal and inverse Gaussian distributions.

4 Discussion and conclusions

In this contribution, we aim to point out the difference between frequently inter-
changed notions of variability and randomness. Variability described by cv and
randomness by ch are different concepts. Consider, for example, a spike train
consisting of “long” and “short” ISIs with no serial correlations. By adding
“medium” length ISIs the spiking variability is not increased, contrary to what
is expected intuitively, but is decreased. Simultaneously, since the count of ISI
of different lengths increases, the spiking randomness is increased. Thus, even if
a conventional analysis of two spike trains reveals no difference, the spike trains
may still differ in their randomness and the difference is tractable with a limited
amount of data [3].

Additionally, by considering the Fisher information-based dispersion coef-
ficient, cJ , we show that ISI randomness (increasing with diversity of the ISI
lengths) and probability density “smoothness” are related, but still different no-
tions. For example, all of the tested distributions are “maximally smooth” for
cv

.
= 0.5 and “maximally even” (maximum ISI randomness) for cv

.
= 1.
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