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Abstract. The instantaneous assessment of high-priced liquor prod-
ucts with minimal sample volume and no special preparation is an impor-
tant task for quality monitoring and fraud detection. In this contribution
the automated classification of Raman spectra acquired with a special
optofluidic chip is performed with the use of a number of Artificial Neural
Networks. A standard Radial Basis Function Network is adopted to in-
corporate relevance learning and showed robust classification performance
across classification tasks. The acquired relevance weighting per feature
dimension can be used to reduce the number of features while retaining a
high level of accuracy.

1 Introduction

The automated, on-line assessment of high-priced liquor products is essential for
the standardization and quality monitoring in liquor production as well as poten-
tial fraud detection. An ideal sensor should be compact for mobile applications
and require no special sample preparation while measure quality instantaneously.
In [1] an optofluidic chip was presented that uses Raman spectroscopy to acquire
a Raman spectrum of the fluid sample. This spectra proofed to be characteristic
for whisky brands, age or type of maturing cask. A 1-Nearest Neighbourhood
(1NN) classifier produced high accuracies in classifying Whisky age [1].

In this contribution we examine a number of Artificial Neural Network classi-
fier for automated classification of age, distillery, cask and product variety from
whisky spectra. It is shown that a small Artificial Neural Network model is
capable of high classification accuracy. In order to reduce processing time and
sensor costs, a strategy of feature selection, introduced as ’relevance learning’
by [2], was used. We show that relevance learning can be integrated easily into
a standard RBF Network which shows robust classification performance across
datasets. The found weighting of feature dimensions was used to reduce the
number of channels in the spectral data.

2 Data Acquisition

The procedure to acquire the Raman spectra from whiskey samples is shown in
detail in [1]. In Raman spectroscopy a sample is illuminated with a laser beam.
The laser light interacts with molecular vibrations, phonons or other excitations
in the system, resulting in the energy of the laser photons being shifted up or
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Fig. 1: Raman Spectra: Depicted are the mean Raman spectra for three different
whiskey varieties together with the standard deviation. The whiskey varieties
produce a distinct peak pattern in the spectra and a varying offset.

down. The shift in energy gives information about the vibrational modes in
the system. Raman spectroscopy is commonly used in chemistry, since vibra-
tional information is specific to the chemical bonds and symmetry of molecules.
Therefore, it provides a fingerprint by which molecules can be identified.

Whisky samples of 20μl were directly loaded into the microfluidic chip with-
out any preparation. After Raman acquisition, any remaining liquid at the
sample inlet was wiped off and 40 μl of deionized water rinsed the system. Ra-
man excitation was performed with 200 mW of laser power at a wavelength of
785 nm.

Six commercially available Scotch whisky brands and their variants were
used to build the dataset. The ’Age’ dataset consists of Glenfiddich at the age
of 12, 14 and 18. The dataset ’Cask’ is taken from a Glenmorangie matured
in different casks. The ’Distillery’ dataset groups all available data according
to the brand. Finally the ’Product’ dataset consists of different varieties of
Bruichladdich Whisky. For each class, 400 Raman spectra were taken. Each
dataset was scaled so the maximum across spectral bands was one. Figure
1 shows average spectra for three whisky classes with standard deviation. In
Figure 2, for each dataset, the two most discriminant dimensions from an LDA
projection are shown.

Relevance Radial Basis Function (rRBF) Network

The original Radial Basis Function (RBF) network was introduced in [3]. A
RBF network is a two layer neural network with a first layer of prototypical
spectra wr. A second layer calculates the network output

yk (v) =
∑
r

urkφ (d (v,wr,λ))

with φ (x) = exp
(− x

2σ2

)
. The number of outputs is the number of classes.
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Fig. 2: Data sets used for classification: (a) Glenfiddich of different ages; (b)
Glenmorangie matured in different casks; (c) Whiskey from different distilleries;
(d) Different varieties of Bruichladdich; The two highest discriminative LDA
components are shown.

The target vector tj of the j-th sample is set to a 1-of-n coding with n being
the number of classes. The (dis)similarity of input spectrum vs. prototype is
calculated by weighted Euclidean distance,

d (v,wr,λ) =
∑
i

λi (vi − wir)
2

where λi is termed the relevance factor [2, 4] and weights each spectral band
and will be adapted by the model training process.

The output weight urk is yielded by direct update [5].

UT = Φ†T

where U = (urk), (T)jk = tjk and (Φ)jr = φ
(
d
(
vj ,wr,λ

))
and † denotes the

pseudo inverse. The parameters wr, σr, and λ are updated through minimizing

E (V,W,λ) =
1

2

∑
j

∑
k

{
yk

(
vj

)− tjk

}2

which is achieved by gradient descent with momentum term. In the first
iteration k = 0 relevance parameters are updated according to

Δλi (k) = −ελ
∂E

∂λi
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Table 1: Test accuracy of classification; averaged across 5-fold cross-validation;
standard deviation in brackets.

Method Age Cask Distillery Product
RBF 0.974 (0.010) 0.991 (0.006) 0.942 (0.011) 0.993 (0.004)
rRBF 0.981 (0.012) 0.994 (0.004) 0.949 (0.010) 0.973 (0.014)
GRLVQ 0.825 (0.073) 0.899 (0.043) 0.735 (0.037) 0.938 (0.015)
SRNG 0.874 (0.017) 0.978 (0.014) 0.740 (0.006) 0.968 (0.012)
SVM 0.885 (0.020) 0.962 (0.017) 0.841 (0.018) 0.941 (0.019)
1NN 0.980 (0.007) 0.994 (0.001) 0.953 (0.007) 0.980 (0.007)

while for any other iteration k ≥ 1 updates are

Δλi (k) = − (1− α) ελ
∂E

∂λi
+ αΔwr (k − 1)

with α being the ’momentum term’. Updates for wir and σr are performed
accordingly. The partial derivative for the relevance factor is as follows

∂E

∂λi
= −

∑
j

∑
k

{
yk

(
vj

)− tjk

}∑
r

urkφ
(
d
(
vj ,wr,λ

))
(
vji − wir

)2

2σ2
r

The rRBF has been shown to have a robust classification performance in compar-
ison to other prototype based approaches with relevance learning like Generalized
Relevance Learning Vector Quantization (GRLVQ) [2] and Supervised Relevance
Neural Gas (SRNG) [4] in classifying nutritional states in plants presented in
[6].

3 Machine Learning

For the classification a number of different methods were implemented or used
from 3rd party libraries and tested for their classification accuracy. A 1-Nearest
Neighbourhood (1NN) classifier is used where all the training data is kept and the
label of a presented test vector is the label of the best matching (Euclidean dis-
tance) training vector. A Standard GRLVQ and SRNG implementation are used
with three prototypes per class. Weight adaptation is performed by stochastic
gradient descent. The complete training data is presented to the network for 50
times. The rRBF network is setup with three times the number of classes in each
dataset in the hidden layer to match network complexity. Weight adaptation is
performed with conjugate gradient descent with momentum term. Training is
performed till the step size reached a lower threshold. The output of the net-
work is a 1ofN coding of the class label. As comparison, a Support Vector
Machine (C-SVM) [7] with linear kernel was trained using the freely available
libSVM package 1. Classification is performed in a 5-fold cross validation setup.
Accuracy is averaged and standard deviation calculated.

1www.csie.ntu.edu.tw/˜cjlin/libsvm/
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Fig. 3: Relevance Learning: (a) Depicts the weighting per Raman shift for
the classification of age and distillery; (b) Compares a reduction of dimensions
starting with just one Raman Shift value for random selection or selection guided
by relevance weighting.

The described rRBF Network models optimize its energy function by adap-
tation of per-spectral band weighting. This weight vector is used to order the
spectral bands due to their relevance. In order to check model performance on
reduced spectral information, a rRBF network model was trained on the largest
weighted bands as input and continuously added bands with the highest input
dimensionality of 20. The rRBF networks were trained with the same setup
and parameters as above. Test accuracy on unseen data is evaluated for each
n-dimensional input space. As control, a matching number of spectral bands are
chosen at random.

4 Results

In Table 1 test accuracies for all four dataset are depicted. The 1NN classifier
showed robust performances of very high accuracy, comparable to the similar
approach in [1]. However, while a 1NN classfier has to retain and match a data
vector against a large dataset, the RBF as well as the rRBF managed to produce
similar results in accuracy with a much smaller model and offer a much more
efficient classification approach. The SVM performed similarly well with lower
performance in the age and distillery classification. The performance of the
GRLVQ and SRNG was as well dependent on the dataset with accuracy results
ranging from mid 70% to over 90%.

In Figure 3 the results of the feature selection process from relevance learning
are shown for the classification of distillery and age. Feature dimensions in Fig.
3a are weighted differently and by building a rRBF model based on the highest
weighted dimensions, high accuracy can be achieved with less dimensions then
selected by a random selection (see Fig. 3b).
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5 Conclusion

In this paper we presented an extension to the Radial Basis Function Net-
work in order to weight features according to their relevance for a given task.
The methodology is similar to relevance learning used GRLVQ and SRNG. The
rRBF showed robust performances across a number of classification tasks. Near-
infrared Raman spectra from Scotch whisky were classified for whiskey age, ma-
turing cask, distillery and product variety with very high accuracy. The rRBF
produces a relevance pattern that can be used to select the most important
features for a given task and reduce sensor cost as well as processing time.

The feature selection technique and therefore dimension reduction using a rel-
evance vector is an integral part of the classification model and is optimized due
to the model objective function. This sets it into contrast to common bottom-
up dimension reduction techniques like PCA and feature selection strategies for
example by mutual information [8], which are independent of the actual classifi-
cation or regression model. The selection strategy by relevance learning however
does not deal with the likely co-linearity of the data e.g. its high correlation of
neighbouring spectral bands. The spectra is seen as functional pattern [9]. For
future work a regular sub-sampling of the spectra should be considered compared
to the random selection strategy taken as control.

The optofluidic chip used for recording the Raman spectra is an ideal sensing
device for detecting the quality of alcoholic beverages from a small sample vol-
umes and with low acquisition time while being portable and easy to use. The
combination of pattern producing sensing devices and advanced pattern recog-
nition algorithms offers a powerful tool with applications in food inspection,
environmental monitoring and medical diagnostics.
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