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Abstract. A physical scheme based on a single nonlinear dynamical
system with delayed feedback has been recently proposed for Reservoir
Computing (RC) [1]. In this paper we present a computational implemen-
tation of this idea using a simple chain topology with properties derived
from its physical counterpart (e.g. the reservoir is defined by two tunable
parameters related to feedback- and input-strength terms). An applica-
tion to time series prediction is described and a comparison with other
standard reservoir computing methods is given.

1 Introduction

Standard Reservoir Computing (RC) models are formed by a large reservoir
of sparsely and randomly connected neurons (with fixed weights), mapping a
dynamical input signal onto a high-dimensional state space in a recurrent and
transient-like fashion [2]. Input signals are injected into the reservoir neurons
using fixed random weight connections and a simple parametric readout function
is trained to combine the resulting reservoir states in order to solve a given task
(i.e. the parameters are optimized to reproduce the outputs associated with
the inputs). Typically simple linear regression, including ridge, pruning and/or
regularization terms [3], are used in the readout process, leading to efficient
learning machines.

Due to the “black box” character of RC, the construction of a model for
a particular problem requires a series of trials and errors in order to specify
optimum connectivity and weight structure of the reservoir for the task, as well
as appropriate input connections. However, it has been recently shown that
very simple deterministically constructed reservoir with simple cycle topology
(e.g. the so-called simple cycle reservoir, SCR) give a performance comparable
to standard RC on a number of time series benchmarks [4, 5]. Moreover, due to
their simplicity, the properties of these reservoirs can be better analyzed, thus
providing more usable machines to solve real world problems.

Along these ideas, a new RC physical paradigm based on a single time-delay
nonlinear system has been recently proposed in the electro-optical community
[1]. Dynamical time-delay systems have the inherent property that their phase
space is infinite-dimensional. Therefore a high-dimensionality can be achieved
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Fig. 1: Schematic overview of the Time-Delayed Reservoir scheme (TDR) with
input u, the reservoirR and the final output y, resulting from the read-out linear
function of the reservoir state.

with a single time-delayed system by subdividing the delay time into a number
of virtual neurons at equal time intervals. In this way the required complex
network of many neurons is reduced to a single system (or node) with delay.
In this paper we present a computational implementation of this idea, leading
to a simple chain topology similar to the above SCR models, but with neuron
functioning and properties derived from its physical counterpart. These models
are hereafter referred to as Time-Delayed Reservoirs (TDR) and a schematic
illustration of their topology is given in Fig. 1.

2 Time-Delayed Reservoirs (TDR)

The new approach introduced in this paper is based on the following equation:

ẋ(t) = −x(t) + ρf [x(t− τ) + γ m(t) I(t)], (1)

characterizing a time-delayed system x(t) with sigmoidal nonlinearity, f [u] =
1/(1 + exp(−c u)) − 0.5, driven by the input signal I(t). A high-dimensional
reservoir of neurons is achieved by subdividing the delay time τ into N virtual
nodes at equal time intervals ∆ = τ/N within τ , all of them receiving the same
input signal during the interval [t, t + τ ] but with a fixed mask function m(t),
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given by a stepwise function with random changes at t + i∆, i = 1, . . . , N − 1,
taken from a uniform (-1,1) distribution; see [1] for more details.

In this paper we present a computational implementation of the above phys-
ical scheme, where each τ time interval is discretized into N sub-intervals and
assigned N neurons Ri, i = 1, . . . , N , with connections derived from (1) accord-
ing to the corresponding numerical integration:

Ri(n) = (1− h)Ri−1(n) + h ρ f [Ri(n− 1) + γ mi u(n)]; for i ≥ 1, (2)

where R0(n) ≡ RN (n − 1), mi are the mask values, the parameters γ and ρ
correspond to feedback- and input-strength terms, and h corresponds to the
integration step (in this paper we use h = 0.1). The N different values of mi

are randomly generated from a uniform (−1, 1) distribution and the input data
u(n) is standardized.

The above scheme completely defines the topology of the reservoir (a chain),
where each neuron is connected to the preceding one in the chain and it is
time-delay connected to the same neuron in the previous time (see Fig. 1 for
a schematic view). In this case, the activation function f does only affect the
latter of these connections, whereas the former one is linear. Finally, note that
although the topology of the resulting TDR models seems to be similar to the
SCR models [4], Eq. 2 explicitly involves two different reservoir time steps and
implies an asynchronous updating of the neurons. Note that this particular
topology is inspired in the physical counterpart (1), which required a single
time-delayed system to dynamically perform the calculations.

In order to analyze the computing capabilities of the TDR as a function of
the parameters, we computed the mean memory capacity using random input
data as described in [6]. As it can be shown in Fig. 2, high memory values (up to
16) can be obtained with these type of reservoir in a large area of the parameters,
with higher sensitivity to the γ parameter (i.e. the feedback term). Note that
this provides a lower limit for the memory achievable by the TDR, since longer
memory capacities could be attained for a particular problem, depending on the
autocorrelation of the data [7].
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Fig. 2: Memory capacity of the TDR as a function of the γ and ρ parameters.
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3 Time Series Prediction

Time series analysis is a challenging problem with many important real-world
applications from engineering to biomedicine and finance [8]. In this paper we
consider a particular problem, the Mackey-Glass (MG) time series, which has
been previously analyzed in a number of papers comparing the performance of
different machine learning methods, including standard reservoir computing [2].
To this aim, we generated a 10000 points time series of the MG system (with
standard parameters: τ = 17 and n = 10) with equally-spaced sampling every
t = 3 time units. The first half of the series (5000 points) was used for training
and the last one for testing. Fig. 3 shows the results for two particular reservoir
sizes: (A) 500 neurons and (B) 1500 neurons. The left column shows the train
error (in terms of the normalized RMSE, denoted by NRMSE, defined as
RMSE/σ, where σ is the standard deviation of training time series) whereas
the right one shows the test error, for the same space of ρ and γ parameters
considered in Fig. 2. Note that no overfitting occurs in this case and also that
areas with smaller errors are associated with those regions with appropriate
memory values (see Fig. 2). The optimum results obtained for this time series
correspond to the parameter values ρ = 0.75 and γ = 0.2, achieving a NRMSE
test error of the order of 10−7. Note that this error corresponds to one-step-
ahead prediction, with a sampling step of t = 3 and, hence, with a total forecast
horizon of t = 3.

In order to test the sensitivity of the results to the size of the reservoir and to
the particular mask used, we considered a particular TDR configuration (ρ = 0.6
and γ = 0.2) and tested the results for different number of neurons (ranging
from 100 to 3000) considering ten different random masks. The bottom panel of
Fig. 3 shows the resulting test errors using a box-and-whiskers plot. As it can
be shown, the results are not sensitive to the particular mask considered, and
optimum results are achieved with around 1500 neurons, as shown in (B).

In order to compare the results with other studies, we have also computed
the errors for k steps ahead prediction (with forecast horizons t = 3 k), where
the estimated output is re-injected into the reservoir to obtain the next step
prediction. Figure 4 shows the results obtained for increasing forecast hori-
zons, ranging from 3 to 2000 (with horizon steps of t = 30). In this case, we
considered a configuration given by ρ = 0.6 and γ = 0.2, close to the opti-
mum, with a NRMSE of 9.8 × 10−7. This figure illustrates the good perfor-
mance of this simple reservoir computing machine; for instance, these results for
this particular configuration are close to those reported in [2], with an error of
log10(NRMSE) = −5.09 for a forecast horizon t = 84, claiming an improve-
ment in more than three orders of magnitude with regards to previous results
(note that the fourth point shown in Figure 4 corresponds to a forecast horizon
of t = 93 with log10(NRMSE) = −4.41).

16

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.



-6

-5

-4

-3

-2

100 500 1000 1500

Number of Neurons (N)
2000 2500 3000

−6

−5

−4

−3

−2

lo
g
1
0
(N

R
M

S
E

)

0 0.5 1.0 1.5
0

0.5

1.0

1.5

γ

ρ 0 0.5 1.0 1.5
0

0.5

1.0

1.5

γ

ρ

0 0.5 1.0 1.5
0

0.5

1.0

1.5

γ

ρ 0 0.5 1.0 1.5
0

0.5

1.0

1.5

γ

ρ

−1
lo

g
1
0
(N

R
M

S
E

)

Train

Train

Test (min: 6.8 10   )
-5

Test (min: 7.2 10   )
-7

(A
) 

N
=

5
0
0

(B
) 

N
=

1
5
0
0

−6

−5

−4

−3

−2

lo
g
1
0
(N

R
M

S
E

)−1

 
 

 

(A)

(B)

 

  

Fig. 3: Results of the performance of the TDR (in terms of normalized RMSE)
for two particular reservoir sizes: (A) 500 neurons and (B) 1500 neurons. The
bottom figure shows a box-and-whiskers plot of the errors attained for different
reservoir sizes (from 100 to 3000 neurons) for the same configuration, ρ = 0.6
and γ = 0.2, and with ten different realizations of random masks.

4 Conclusions

A new physically-inspired reservoir computing scheme has been presented, based
on a single nonlinear dynamical system with delayed feedback. This leads to a
simple chain topology for the reservoir, which is characterized by two inter-
pretable parameters derived from its physical counterpart: the feedback- and
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Fig. 4: Test error of the TDR reservoir with parameters γ = 0.2 and ρ = 0.6
for different forecast horizons, ranging from t = 3 (one-step-ahead prediction)
to t = 2000. The slope shows the value of the Lyapunov exponent for MG.

input-strength terms, respectively. The properties of the resulting reservoir are
analyzed, both in terms of the memory capacity (with maximum attainable val-
ues of 16 for random input) and the prediction error for the reconstruction of
time series. In particular, an application to a benchmarking problem (Mackey-
Glass time series) is described and a comparison with other standard benchmark
reservoir computing methods is given, obtaining similar results.
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