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Abstract. A two-layer neural network is developed in which the neu-
ron model computes a user-defined similarity function between inputs and
weights. The neuron model is formed by the composition of an adapted lo-
gistic function with the mean of the partial input-weight similarities. The
model is capable of dealing directly with variables of potentially different
nature (continuous, ordinal, categorical); there is also provision for missing
values. The network is trained using a fast two-stage procedure and in-
volves the setting of only one parameter. In our experiments, the network
achieves slightly superior performance on a set of challenging problems
with respect to both RBF nets and RBF-kernel SVMs.

1 Introduction

A shortcoming of the existent neural network models is the difficulty of adding
prior knowledge to the model in a principled way. In this sense, the integra-
tion of heterogeneous data sources in information processing systems has been
advocated elsewhere [1]. Under the conceptual cover of similarity measures, we
develop a class of neurons that accept heterogeneous inputs and weights and
compute a user-defined similarity function between these inputs and weights.
The neuron transfer function is the composition of a parameterized sigmoid-
like function adapted to the [0, 1] interval taking the averaged vector of partial
input-weight similarities as argument. The basic idea is that a combination
of similarity functions, comparing variables independently, is more capable of
catching better the singularity of an heterogeneous dataset than other methods
which require a priori data transformations. The resulting neuron model then
accepts mixtures of continuous and discrete quantities, with explicit provision for
missing information. Other data types are possible by extension of the model.
An appealing advantage is found in the enhanced interpretability of the learned
weights, so often neglected in the neural network community.

2 Similarity measures

A similarity measure s is a symmetric function expressing how “like” two ob-
servations are. We start by developing specific similarity measures for different
types of variables, defined in the common codomain Is = [0, 1] . We use sijk to
mean sk(xik, xjk), the similarity of observations xi,xj according to variable k.
Nominal variables. It is assumed that no partial order exists and the only
possible comparison is equality. The basic measure for these variables is the
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overlap. Let xik, xjk be the modalities taken by two examples xi,xj , then sijk =
1 if xik = xjk and 0 otherwise. We introduce in this paper a frequency-based
approach that goes beyond this simple equal/not-equal scheme:

sijk =

{
0 if xik �= xjk

1− Pik if xik = xjk
(1)

where Plk is the fraction of examples in a sample that take the value xlk for
variable k (ideally, one could use the probability of this event, if this knowledge
is available). Therefore, if the values are different, there is not similarity. If
they happen to be equal, then the similarity is inversely proportional to their
probability. For instance, if two patients are being compared on their current
illness, both having a rare illness makes them more similar than both having a
very common one. Other ways of inverting the probability are possible. In the
absence of further knowledge, the linear one is the simplest choice.
Ordinal variables. These variables form a linearly ordered space (O,�) and
can be seen as a bridge between categorical and continuous variables. Let
xik, xjk ∈ O, such that xik � xjk, and Plk be defined as above. Define [2],

sijk =
2 log(Pik + . . .+ Pjk)

logPik + logPjk
(2)

The summation runs through all values xlk such that xik � xlk and xlk � xjk.
Continuous variables. Let xik, xjk ∈ A = [r−, r+] ⊂ R, r+ > r−. The
standard metric in R is a metric in A. Therefore, for any two values xik, xjk ∈ A:

sijk = ŝ

( |xik − xjk|
r+ − r−

)
(3)

where ŝ : [0, 1] → [0, 1] is a decreasing continuous function. A very simple
family is ŝ(z) = (1− zβ)α, 0 < β ≤ 1, α ≥ 1 (we take the choice α = β = 1).

2.1 Normalized aggregation of similarities

When we aggregate (e.g. by averaging) the partial similarities we are assuming
that all of them have the same importance. However, each partial similarity
covers its codomain [0, 1] in a different way. Similarities that accumulate on the
upper half of the interval have more influence in the overall value, because they
do a more important contribution to the aggregation. We argue that this bias
should be corrected so that all the partial similarities have a common baseline.

Let s..k be the mean similarity among all examples in the analyzed data
sample, according to variable k only. We first rescale all the similarities as
ŝijk =

sijk
s..k

. Then a normalization function n : (0,+∞) → (0, 1) is applied:

n(x) =
xa

xa + 1
(4)
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where a conveniently controls the shape of the function. When a similarity
computation is needed, it is calculated as n(ŝijk) instead of sijk. The similarity
between two elements xik, xjk is now computed as:

sijk =

{
n
(

s(xik,xjk)
s..k

)
if neither of xik, xjk are missing

1
2 otherwise

(5)

This is so because, when s..k is used to replace the missing similarity value,

we have n(
s(xik,xjk)

s..k
) = n( s..ks..k

) = 1
2 (this holds regardless of the value of a).

The method looks very naive and indeed it is; on the other hand, it is very
intuitive and computationally simple. It does not require the estimation of the
missing information (a delicate and risky undertaking), only the estimation of
the overall similarity between two observations, in a situation in which some of
the partial similarities could not be computed. We argue that this task is easier
and, after all, is what we really are interested in: the similarity value.

2.2 Similarity-based data clustering

In a clustering task the examples are grouped attending to some similarity mea-
sure. The Leader algorithm is a simple and attractive unsupervised clustering
method [3]. In essence, the algorithm processes the examples of the dataset ta-
king one at a time and evaluating if it can belong to any cluster already created.
If it cannot, a new cluster will be created using this new example as leader.

We have developed a new version of the algorithm that represents an im-
provement in two ways. First, the algorithm now works using general similari-
ties instead of metric distance functions. Second, given s0 ∈ Is, the method is
guaranteed to fulfill a number of interesting properties:

1. For any example, the similarity with its leader is at least s0.

2. The similarity between any two leaders is lower than s0.

3. If two examples are repeated in the dataset, they will have the same leader.

4. For any example, the similarity with its leader is higher than that with
any other leader.

In summary, the algorithm needs the specification of one parameter (s0 ∈ Is)
and the returned leaders are a subset of the data set (thus there is no problem in
delivering “impossible centroids” as many algorithms do). The number of clus-
ters cannot be estimated beforehand, but it is possible to establish a relationship
with the s0 parameter, a higher s0 implying a larger number of clusters.

3 Similarity neural networks

Consider s : Xn×Xn → Is a similarity function in Xn = X(1)× . . .×X(n), the
cartesian product of a number n of source sets. This function is formed by the
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aggregation of n partial similarities sk : X(k) ×X(k) → Is, each X(k) being the
domain of the predictive variable k, and where Isk = [0, 1], for coherence.

The sk are computed with the similarity measures for the different variable
types (although this alone does not necessarily determine the right measure). A
neuron model can be devised that is both similarity-based and handles data het-
erogeneity and missing values. Let φi(x),x ∈ Xn denote the function computed
by the i-th neuron, using the weight vector μi ∈ Xn and smoothing parameter
pi. Then define φi(x) = f(s(x, μi), pi), where s(x, μi) =

1
n

∑n
k=1 sk(xk, μik).

This S-neuron adds a non-linear activation function to the linearly aggregated
similarities. Such function could be any sigmoid-like automorphism (a monotonic
bijection) in [0, 1]. In particular, we consider the simple family of functions:

f(x, p) =

{ −p
(x−0.5)−a(p) − a(p) if x ≤ 0.5

−p
(x−0.5)+a(p) + a(p) + 1 if x ≥ 0.5

(6)

where a(p) = −0.25 + 0.5
√
0.52 + 4p and p > 0 is a parameter controlling the

shape of the function. For all p > 0, lim
p→∞ f(x, p) = x and f(x, 0) = H(x− 0.5),

being H the Heaviside function. In this work we set pi = 0.1 for all neurons i.
A Similarity neural network (SNN) is designed as a feed-forward architecture,

with a hidden layer composed of S-neurons and a standard output layer. The
k-th output neuron of the SNN computes the function:

Φk(x) =

h∑
i=1

wkiφi(x) + wk0, k = 1, . . . ,m

where h > 0 is the number of hidden S-neurons, m is the number of outputs
and W = (wki) is the weight matrix. The SNN can be naturally seen as a
generalization of the RBF [4]. This is so because the response of hidden neurons
is localized: centered at a given object (the neuron weight μi, where response is
maximum), falling down as the input is less and less similar to this center.

The main difference is in the interpretability of the model. First, the output
is a linear combination of the set of similarities of the input with a selected
subset of prototypical elements. Second, the similarities are user-defined, and
both the input and weight vectors are expressed in the original variables.

Consider now a training data sample {(xl, yl)}Nl=1. Since the SNN is a two-
layer feed-forward neural network with local computation units in the first layer,
training can be solved efficiently in a two-stage procedure, as detailed next:

First layer weights. The first layer centers are a subset of the examples in
the sample dataset. These centers are chosen to be the cluster leaders returned
by the Leader 2 clustering algorithm acting on the set {xl}Nl=1. The algorithm
uses the user-defined similarity as explained in previous sections.

Second layer weights. Regularization is a technique that incorporates a
complexity penalty to control overfitting when learning the weights:
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SSEλ(W ) =

N∑
i=1

m∑
k=1

(yik − Φk(xi))
2
+ λ

h∑
j=0

m∑
k=1

w2
kj

where the first term is the sum of squared errors and the second is the
regularization term (in this case, this is known as ridge regression). The mini-
mization of SSEλ forces to compensate smaller errors against smaller weights.
We define the H = (hij) matrix as hij = φj(xi), i = 1, . . . , N, j = 0, . . . , h. Let
A = H ′H + λI, P = I −HA−1H ′, and y the vector of outputs, where I is an
identity matrix of appropriate dimensions. For single-output networks (m = 1),
the optimal weight vector is w∗ = A−1H ′y, the minimizer of SSEλ(w) for a

fixed λ > 0. The Generalized Cross Validation error is GCV = Ny′P 2y
(Tr(P ))2

.

When the derivative of GCV is set to zero, the resulting equation can be ma-
nipulated so that one λ appears isolated in one side of the equation. The value
of λ can be re-estimated iteratively until convergence [4], using

λ =
y′P 2yTr

(
A−1 − λA−2

)
(w∗)′A−1w∗Tr (P )

(7)

An initial guess for λ is used to evaluate expression (7), which produces a
new guess. The obtained sequence converges to a local minimum of GCV. We
use in this work the best result of the initial set λ ∈ {10−6, 10−3, 1}.

4 Experimental comparison

In this section we report on experimental work in which the SNN is compared to
a standard RBF neural network (RBFNN) and to a SVM using the RBF kernel.
These latter methods need a pre-processing of the data, carried out following the
recommendations in [5] for non-continuous variables. The values of the different
parameters (s0 for the SNN, number of clusters and RBF width for the RBFNN,
and cost and RBF width for the SVM) are optimized using a grid search.

Data set C/R Size Variables Missing?
Horse colic C 368 21 (6N,7C,8O) 28%
Credit approval C 690 15 (9N,6C) 5%
Voting records C 435 16 (16N) 5.3%
Servo data R 167 4 (2C,2N) none

Table 1: Selected data sets: C/R stands for Classification/Regression. Legend
for variable types: (N)ominal, (C)ontinuous, (O)rdinal.

Four challenging problems (see Table 1) have been selected as characteristic of
modern modeling problems because of the diversity in data heterogeneity and the
presence of missing values [6]. The resampling method consists in five repetitions
of two-fold cross-validation (5×2 CV) [7]. A paired F -test can then be computed
to assess potential statistical significance in the differences in performance. The
hypothesis of two methods having the same error rate can be rejected at the 95%
level when the F statistic exceeds F > 4.74 [8]. This test is difficult to satisfy.
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5 Discussion

The obtained 5×2 CV prediction errors are displayed in Table 2. The relevant
quantity is the average mean square error (MSE), since this is the measure the
methods have been trained to minimize. For classification problems, we also give
the average percentage of errors. The F -test results are shown in Table 3. It
can be seen that the SNN obtains better MSEs in all the problems. Sometimes
this corresponds to a decrease in the percentage of errors (as in Horse Colic),
sometimes not (as in Voting Records). Overall, it is the most competitive method
of the three for these real-world problems described by a mixture of variables of
radically diverse types, and in presence of missing information.

Horse colic Credit approval Voting records Servo
Method error(%) MSE error(%) MSE error(%) MSE MSE
SNN 16.74 0.128 14.09 0.110 4.60 0.039 0.933
RBF 20.06 0.153 14.81 0.116 4.64 0.064 0.997
SVM 19.94 - 16.06 - 6.53 - 2.230

Table 2: Results in terms of average 5×2 CV and mean square errors (MSE).

Horse colic Credit approval Voting records Servo
Method F% FMSE F% FMSE F% FMSE FMSE

RBF 3.053 12.786 1.337 2.884 0.805 1.036 0.786
SVM 2.584 - 3.276 - 2.298 - 14.386

Table 3: Results of the F statistic against the SNN, both for average 5×2 CV
(F%) and mean square errors (FMSE). Significant results (> 4.74) are boldfaced.
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