ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

From neuronal cost-based metrics
towards sparse coded signals classification

Anthony Mouraud', Quentin Barthélemy', Aurélien Mayoue®,
Cédric Gouy-Pailler!, Anthony Larue®, Héléne Paugam-Moisy?
1 - CEA-LIST, Laboratoire d’Outils pour I’Analyse de Données
91191 Gif-sur-Yvette, France
2 - LIRIS, CNRS, Université Lyon 2, F-69676 Bron, France

Abstract.

Sparse signal decompositions are keys to efficient compression, storage and
denoising, but they lack appropriate methods to exploit this sparsity for a
classification purpose. Sparse coding methods based on dictionary learning
may result in spikegrams, a sparse and temporal representation of signals
by a raster of kernel occurrences through time. This paper proposes a
method for coupling spike train cost-based metrics (from neuroscience)
with spikegram sparse decompositions, for clustering multivariate signals.
Experiments on character trajectories, recorded by sensors from natural
handwriting, prove the validity of the approach, compared with currently
available classification performance in literature.

1 Introduction

Sparse coding has been intensively studied in relation with signal decomposition
and dictionary learning, making an extensive use of sparsity constraints through
the fo- or ¢1-norm to decompose and recover signals from a small number of
coefficients. Whereas classic decompositions on bases of exponentials (Fourier),
wavelets or curvelets may be badly adapted to the signal at hand, dictionary
learning algorithms extract patterns characteristic of a given database [1, 7].
The paper focuses on sparse coding methods that learn to convert a raw signal
into a multisource spikegram, a sparse and temporal coding [3]. While robustness
and compression arguments are usually employed to justify sparse coding, sparse
representations lack for appropriate tools for classification purpose.

In the meantime, recent techniques in neuroscience give access to large multi-
neuronal spike train recordings. Thereby, several spike train analysis methods
have been proposed by computational neuroscientists in the last few years [§].
Among the approaches aiming at quantifiying the degree of similarity between
pairs of spike trains, the paper focuses on the spike train metrics that quan-
tify the cost of a transformation from one spike train into another by means of
elementary steps [11]. Other metrics have been proposed, as reviewed in [10].

The present work proposes an original approach to multivariate signals classi-
fication through the coupling of sparse coding processes and spike train analysis
methods. First, a sparse coding step consists in building a set of spikegrams
from a database of signals (Section 2). Second, a cost-based metric-space anal-
ysis (described in Section 3) is applied to clustering spike trains that can be
derived from spikegrams (Section 4). Experiments on character trajectories and
comparative results are presented in Section 5.
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2 Sparse coding of multivariate signals

The method for sparse coding multivariate signals defined by Barthélemy et
al. is summarized in this section (see [3] for details) and the visualization of
resulting sparse codes is illustrated. A signal sampled in N temporal bins can be
represented by a vector s € R and a multivariate signal with V components is a
matrix y € RV*V . For multivariate signals, a normed dictionary ® € RNV*V*M
is composed of M elementary patterns {¢,, }n]\le € RV*V usually called atoms.
The decomposition of a signal y on a dictionary & is defined by:

M
y:¢x+e:Z$m¢m+e (1)
m=1
with 2 € RM the vector of coding coefficients and ¢ € RY*V the residual

error.

Due to the temporal nature of a signal®, two atoms of the dictionary may
correspond to a same short signal, starting at different times ¢, and ¢ in {1..N}.
Thereby a compact dictionary ¥ can be defined as a set of A shiftable kernels
{1/»\}1/\\:1, each translatable at any temporal position 7. As a result, each atom
of the dictionary ® can be rewritten ¢,,(t) = ¥\ (t — 7) since it is characterized
by a kernel of index A and its temporal starting position 7.

The sparse decomposition methodology is two-fold. On the one hand, the
adapted dictionary is learned from a sample of signals, by alternating between
two steps [3]: 1) sparse approximation of the coding coefficients z, with a fixed
dictionary ® (multivariate orthogonal matching pursuit), ii) updating the ker-
nels of the compact dictionary ¥, with fixed = (a gradient descent method).
Sparse approximating a signal corresponds to reducing its decomposition on the
dictionary @ to a small number of non-zero coefficients associated to strong en-
ergy patterns only. Dictionary learning corresponds to updating the kernels of
the compact dictionary ¥ (and thus updating ®) by maximum likelihood opti-
mization w.r.t. the reconstruction accuracy. On the other hand, each database
signal is projected onto the overcomplete basis of the learned dictionary. At the
end of the process, each signal y is sparsely coded on I' atoms? (with I' < M):

r A

(vt € {L.N}) y(t) =S a4+ et) =3 3w tnlt -7 +elt) ()

y=1 A=1T€0N

where o is the set of all starting times of a kernel ¥, when detected in the
signal y. Note that o, is an empty set or reduced to a single element for most
values of A\, and most coefficients x » are set to zero (if 7 ¢ o).

The sparse vector x , is usually displayed as a time-kernel representation
called spikegram (Figure 1, bottom), a sparse and temporal representation of
signals by a raster of kernel occurences through time. A spikegram condensates
three pieces of information: the kernel temporal position 7 (abscissa), the kernel
index A (ordinate), the amplitude z, . (spike color). Comparison of the original

!Notation: with ¢ the time variable, in discrete time : y = Y(t)eq1.. Ny With (V2) y(t) € RY.
2The number I' of atoms in the final code can be fixed as a hyperparameter of the method.
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(top) and reconstructed (middle) signals shows the low residual error. The
spikegram (bottom) illustrates the high reproducibility of the decompositions
across the five occurrences of a bivariate signal.
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Figure 1: Sparse decomposition of five Figure 2: Confusion matrix: Observed
occurrences of a bivariate signal. (ordinate) vs target (abscissa) class.

3 Cost-based metrics for spike train analysis

Multisource spikegram representations present many analogies with multineu-
ronal spike train raster plots displayed from recorded neuron activities: Neurons
correspond to kernels of the dictionary and the timing of spikes correspond
to the starting position of atom occurrences. Timing of both neuronal and
kernel spikes are decisive for signal discrimination. This section explains how
cost-based metrics lead to an accurate spike train clustering.

Multineuronal cost-based metric:
The present work focuses on cost-based metrics as defined in [11], especially
Dsrike  First defined for monosource spike trains comparison and further ex-
tended to multineuronal spike trains by Aronov [2], the metric relies on the
alignment of two multineuronal spike trains. The aim is to compute the cost of
aligning the spikes of a train S, onto the spikes of a train S, by means of spike
deletion/insertion (cost 1), or spike label-change (cost k), or/and spike temporal
shift (cost ¢ factor of temporal shift At):

T+
D;{)]jke(sa, Sp) = min <M(Sa) + M(Sp) —2r —2s+ ks +q x Z Atg> (3)
® (=0

where M(S) is the number of spikes in trains (S, or Sp), with r shifts between
same label spikes and s shifts between different label spikes. An efficient
algorithm has been proposed in [2], based on dynamic programming, to achieve
the minimum cost computation. The family of D;{’Ijke metrics, for ¢ > 0 and
0 < k < 2 (otherwise deletion or insertion is cheaper) is rich. For a given
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dataset, the cost parameters (¢, k) can be adapted to the spike train features.

Clustering and confusion matrix:
Let us consider a dataset of spike trains {S,}i1<p<p and their target class® t,
among C' classes. The dataset can be clustered in the cost-based metric space:
For any given spike train S, a z-order average distance (a negative-power law
transformation, to emphasize near-matches [?, Victor97] of S, to any class c¢ is
computed according to Eq. 4 and the observed class c, is the nearest class in
that sense: ¢, = argmin D(S,,c).
ce{1..C'}

1/z
(Vp € {1.P}) (Ve € {1..C}) D(S,,c) = |610| 3 [D;f,jke(sp,S)” (4)

Se6.

where &, is the set of all trains of target class ¢ (except Sp,, when ¢ = t,)
and |G| its cardinality. The resulting clustering depends on the metric D", ke,
Its quality can be evaluated by a normalized confusion matriz M (Figure 2)
and measured by a classification rate, the trace of the confusion matrix. Each
m;; € M can be interpreted as the probability for a spike train S, to have an
observed class ¢, = j when its target class is t, = i. However, the main point is
to discover the best metric, i.e. to find the (¢, k) couple of cost parameters that
maximizes the classification rate.

4 Experimental settings

From spikegram to spike train:
Spikegrams are similar to spike raster plots, with an extra information of ampli-
tude z) . represented by the color of each spike (Figure 1). In order to extend
the cost-based metric analysis to signal classification, the matter is to translate
the spikegram of a signal y into a representative spike train S. We propose
different variants for processing the kernel amplitude information:

Normal: AN forgets the amplitude information. For each spike, only the source and
timing are taken into account and Aronov’s cost optimization is applied.
Threshold: AT is a pruning variant. The only spikes with an amplitude |z | higher

than a given threshold are considered (and processed as in AN).
Inter Spike Interval: AI duplicates every spikes. Each spike is duplicated, the spike-
copy occurring later on, with an inter spike interval 7' — 7 proportional to |z -|.

Sign: AS duplicates every sources®. The “negative” spikes (zx , < 0) are carried by
one source-copy and the “positive” spikes (zx,r > 0) by the other.

Experimental protocol:
Each signal of a database is first decomposed in a spikegram, by the sparse coding
method presented in Section 2. Second, the spikegram is converted into a spike
train, by either AN or AT or Al or AS (all four variants are tested). Third, the

3The target class can be the stimulus that generated the spike train.
4Note that the AS variant can be combined with the others (AT or AlI).
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cost parameters (g, k) are optimized: Since the spike trains are sparse and the
performance most likely varies smoothly as a function of (¢, k), a hierarchical
grid-search is tractable for solving the optimization problem on a sample of data.
Finally, the clustering in the D}’ ke metric space is evaluated as explained in
Section 3: The classification rate measures the ability of the metric for clustering
the signals in a way that is relevant w.r.t. their classes.

5 Experiments and results

A Python GUI and a C++ library have been developed, starting from the “Spike
Train Analysis Toolkit” proposed in Matlab© by Goldberg et al. [6]. The method
has been tested on the Character Trajectories dataset available from the UCI
Machine Learning repository (and on confidential databases - data not shown).
The benchmark dataset [12] contains P = 2858 character trajectories associated
to C' = 20 different classes of monostroke letters. Each character trajectory is
a multivariate signal composed of horizontal and vertical pen tip velocities and
the pen tip force, captured along time (sampled at 200H z).

In first experiments, optimization of (g, k) is performed by cross-validation
on one half dataset (z-order = —2) and classification rate computed on the other
half (z-order = —10). The threshold of the AT variant is 5 and the proportional
factor of the AT variant is 1/2. Classification rates are displayed in Table 1.

Vazlsnt Su;(iegs rﬁ;eg(%) Other methods Success rate (%)
AT 88.1 EiO.Qg Fisher kernels 96.7
: : Classification trees 93.5
AT 93.8 (£1.1) VSV e
AS 97.0 (£0.2) :

Table 1: Clustering qualities obtained on the UCI Character Trajectories dataset
(left) vs state-of-the-art classification performances (right).

The AT variant yields the worst performance since around 2/3 of spikes
have been thresholded in each spike train, leading to excessive sparsity. The
best performance is for the AS variant that reaches 97% correct classification in
average, with stable values of the optimal parameters (¢, k) around (0.08,1.8).

A second set of experiments has been performed on the AS variant, reduc-
ing to 1/4 of the database the sample for optimizing (g, k) and evaluating the
clustering on the 3/4 remaining (z-order = —10). The cross-validation aver-
age classification rate is 94.8%. On the other hand, the classification rate, on
the whole dataset, for mean values of optimal (¢, k) = (0.082,1.628) is 95.5%.
These results confirm both the stability of the performance and the ability for
the cost-based metrics to capture the signal features from their sparse codes.

Note that, although the method processes parsimonious representations of
the signals, the results are similar or even better than performance of the most
recent methods summarized in the right-hand part of table 1. : Fisher kernels [4],
classification trees [5] or hidden Markov models postprocessed by support vector
machines (HMM+SVM) [9].
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6 Conclusion

The paper has proposed tools inspired from computational neuroscience for clus-
tering sparse coded multivariate signals. The idea is to associate the compressing
power of sparse signal representation as spikegrams with the richness and adapt-
ability of similarity measures of spike trains. The classification rates measur-
ing the clustering quality are similar to the state-of-the-art performance, which
proves the efficiency of the method. The strength of the method is twofold:
taking into account the temporal features of the signals and achieving efficient
clustering from sparse codes without need for signal reconstruction.

The next step is to define an on-line classifier able to predict the class of
a new signal from its DZkae—distance to previously learned signal prototypes
(on-going work).
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