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Abstract. Analysis of multidimensional data is challenging. Topological
invariants can be used to summarize essential features of such data sets.
In this work, we propose to compute the Betti numbers from a generative
model based on a simplicial complex learnt from the data. We compare it
to the Witness Complex, a geometric technique based on nearest neighbors.
Our results on different data distributions with known topology show that
Betti numbers are well recovered with our method.

1 Introduction

Exponential growth of sensors and databases leads to more and more multi-
dimensional data to process. The analyst needs new exploration tools to get
more relevant summaries of these data. Unsupervised learning methods usually
extract some relevant variables or combinations of variables using dimension
reduction techniques, or summarize the data instances straight into the multi-
dimensional space using clustering techniques [1].

Here we focus on a topological summary of the data. Interesting topologi-
cal invariants are preserved through homotopy, a very large class of nonlinear
transformations which includes homeomorphism, similarities and isometries as
nested cases. Thus these invariants are more robust than geometrical or statis-
tical properties. So they are more likely to survive the processing chain from
the set of sensors observing the physical phenomenon under study, to the set of
instances and variables finally used to describe this phenomenon. In this work,
we focus on the extraction of such topological invariants from the data set.

2 State of the art

We assume that data are drawn from a set of manifolds in RD(the population)
following some probability density function (pdf) corrupted with noise. Gaus-
sian Mixture Models (GMM)[1] are generative models which attempt to estimate
the population pdf from the data sample with a linear combination of Gaussian
pdf. The GMM can also be used for a clustering purpose, where each compo-
nent accounts for some part of the population. This latter point of view assumes
that the population is a set of generative points (the mean vector of each Gaus-
sian component), i.e. 0-dimensional manifolds corrupted with Gaussian noise
(the Gaussian pdf of each component). From a topological point of view, this
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model is very simple as it encodes the data as a set of disjoint point-sources.
Some attempts have been made to extract more topological information from
the data. Generative models in the spirit of Self-Organizing Maps [2], like the
Generative Principal Manifolds [3] or the Generative Topographic Maps [4] have
been proposed but they impose a priori the manifolds to be connected and one
or two dimensional. In our previous work [5, 6], we proposed the Generative
Gaussian Graph similar to the Topology Representing Network [7], to learn the
connectedness of the population in a statistical learning framework. We defined
a weighted Delaunay subgraph of some prototypes located with a GMM, and use
convolution of this graph with a Gaussian pdf as the basis of a generative mix-
ture model. Vertices and edges of the graph are the components of the mixture.
Proportions of the components are tuned to maximize the likelihood. Edges
with low proportions are pruned from the graph so that remain only edges and
vertices which explain the data.

In the field of Computational Topology, new tools have been proposed to ex-
tract more subtle topological information from the data than the connectedness.
The Betti numbers are such information which count the number of unconnected
component in each dimension. For instance, a sphere has one connected compo-
nent, no hole and one cavity, its Betti numbers are (1,0,1,0,0,...). More details
about these topological notions can be found in [8]. Betti numbers provide a
topological signature of manifolds which allows classifying them according to
some characteristics of their topology. The basis to compute Betti numbers is to
model the data with a simplicial complex. A simplical complex C is a collection
of simplices S such that for any two simplices Si and Sj in C, their intersection
is either empty or in C. A k-simplex is a set of (k + 1)-vertices which can be
embedded in RD≥k as the convex hull of k + 1 points in independent position
: a 0-simplex is a point; a 1-simplex is a line segment; a 2-simplex is a triangle
with its interior; a 3-simplex is a tetrahedron with its interior...

The Witness Complex (WitC) have been proposed in [DeSilva04]. It extends
the Topology Representing Network (TRN) from Delaunay subgraphs to De-
launay simplicial complexes. In WitC, a set of vertices (0-simplex) is defined
subsampling the data or using some vector quantization technique. For each
data, the two nearest vertices to it are connected with an edge (1-simplex). A
data which leads to the creation of a simplex is called its ”witness”. At that
point, the algorithm is identical to the TRN. Then for each data, the three near-
est vertices to it define a triangle (a 2-simplex) except if one of its edges (1-face of
the 2-simplex) has no witness. And so on, for each data, the k nearest vertices to
it define a (k−1)-simplex of the Witness Complex except if one of its (k−2)-faces
has no witness. The obtained Witness Complex is a simplicial complex whose
topology is intended to catch the one of the population underlying the data.
This technique is essentially a geometrical one and it has some limits among
which : it is sensitive to noise; no statistical criterion is optimized; the witness
complex is not self-consistent as points densely drawn from its embedding may
not give rise to it although based on the very same set of vertices.

In the sequel, we propose to extend the Generative Gaussian Graph to a
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generative simplicial complex model and we compare it to the Witness Complex
while extracting Betti numbers from some sampled manifolds.

3 The Generative Simplicial Complex

In this paper, we assume that the data are vectors of RD drawn from a collection
of manifolds corrupted with a centered gaussian noise, whose variance σ2 is
unknown. We assume that this collection of manifolds can be approximated
with a Delaunay simplicial complex of some vertices located in RD. We define
the Generative Simplicial Complex (GSC) as such a model, and use the EM
method [9] to tune its parameters and maximize its likelihood.

3.1 The generative simplex

A gaussian simplex is the elementary component of the Generative Simplicial
Complex. It is a probability density function. Let Sd be a simplex of dimension
d with d+ 1 vertices w in RD, |Sd| its volume,g a D-dimension gaussian distri-
bution, σ > 0 the standard deviation, and p the propability distribution induced
by the gaussian simplex associated with Sd. Then

p(x|Sd, σ2) =
1

|S|

∫
Sd
g(x|v, σ2)dv with g(x|µ, σ2) =

1

2πD/2σD
e−

1
2
||(x−µ)||2

σ2

We use a quasi Monte-Carlo method to evaluate this integral [10].

3.2 From the Generative Simplex to the GSC

A Generative Simplicial Complex is a mixture of generative simplices. Let Sd
i

be the i-th simplex of dimension d, πd
i its proportion in the mixture model,

p(x|Sd
i , σ

2) its probability density function, D the maximum dimension of a
simplex in the model, nd the number of simplices of dimension d, σ the standard
deviation (the same for every simplex), and Dt ≤ D the current maximum
dimension in the iterative algorithm.

p(x) =

Dt∑
d=0

nd∑
i=1

πd
i p(x|Sd

i , σ
2)

4 The learning process

Given a data set, a generative simplicial complex can be learnt from this data,
to approximate the underlying manifold.

1. Initialization : This step gives us a set of prototypes in RD that we
will use as the vertices w of the GSC. We use a classical Gaussian Mixture
Model where the prototypes will be the center of the gaussian distributions
optimized thanks to the Expectation-Maximization [9] algorithm. The
selection of the number of prototypes is made using the BIC criterion [11].
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2. Building the initial complex : We build the Delaunay simplicial com-
plex of the prototypes in dimension D with the prototypes. We sort the
simplices by increasing dimension. These simplices are the components
of the GSC model. In the next step we want to prune this GSC, to get
another one that would better fit the data with respect to the likelihood.

3. Iterative building of the GSC : We start with the vertices and the edges
belonging to the GSC, we have a partial GSC of dimension 1 (Dt = 1).
Step-by-step, we will add the triangles (Dt = 2), then the tetrahedra
(Dt = 3) and so on until Dt = D. At step t, we have a Dt-dimensional
GGSC. During each step, we maximize the likelihood, using EM, only to
optimize the weights π. They are initialized as πd

i = 1/
∑Dt

j=0 nj .

After convergence, if a weight πd
i is below a certain threshold s, the simplex

Sd
i is automatically removed from the GGSC ie πd

i = 0. If a simplex has a
weight πd

i ≥ s, its facets of lower dimension are removed from the GGSC.

4. Getting the Betti numbers : Now that we have a pruned GSC, we use
Plex [12] to get its Betti numbers.

5 Experiments

5.1 Checking the validity of the model

These first experiments shows that learning with a GSC is possible on elementary
simplices. It also gives us a threshold to prune the GSC during the iteration step
3 in section 4. The data are generated using a GSC model with vertices w located
at coordinates (1, 0, ..., 0), (0, 1, 0, ...., 0), ... in RD. A simplex of dimension d will
compete with simplices of dimension d−1. We want to be sure that the model can
learn the intrinsic dimension of the data, which is among the basic topological
information we want to learn. For example, three segments forming a triangle
are competing with the interior of the triangle and vice-versa. We set the vertices
of the GSC on the ones used to generate the data, and set the noise to σ = 0.05,
in the data and in the model. We also set the threshold at a tenth of the initial
weight values.

In each case, the algorithm is able to make a distinction between a simplex
of dimension d and its border of intrinsic dimension d− 1.

5.2 Learning the Betti numbers on a random simplicial complex

We generate data from a random simplicial complex, drawn from the elementary
simplex of dimension 5, with a noise σ = 0.05. We get non trivial topology with
such a complex. We use the same vertices for the GSC model to learn as for
the data the GSC generates. The algorithm is capable of dealing with differ-
ent intrinsic dimensions. We only compare the Betti numbers of the generated
random complex to the ones learnt from the GGSC. The following table gives
the results. It is possible to learn the Betti numbers from data generated by a
simplicial complex.
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σ = 0.005 σ = 0.01 σ = 0.05
GGSC 87.00% 83.00% 95.00%

Fig. 1: Betti numbers learning with different noises

5.3 Learning the Betti numbers of a sphere and a ball

Two data sets are used in this experiment : a sphere, of radius 1 corrupted with
three different noise variances, and a ball of the same radius, also corrupted
with the same noise. Betti numbers of the sphere are (1,0,1,0,...), Betti numbers
of the ball are (1,0,0,0,...). Data are generated in a three dimension space. 30
vertices are used for the learning (30 was the number found after running GMM
with BIC on the data).

WitC GGSC 0.005 GGSC 0.01 GGSC 0.05
σ = 0.005 0.00% 83.00% 0.00% 0.00%
σ = 0.01 0.00% 90.00% 98.00% 0.00%
σ = 0.05 1.00% 95.00% 89.00% 87.00%

Fig. 2: Success rate of extracting Betti numbers of a sphere made of 2000 points
corrupted with noise σ with WitC and GSC with different σ values

WitC GGSC 0.005 GGSC 0.01 GGSC 0.05
σ = 0.005 50.00% 100.00% 86.00% 0.00%
σ = 0.01 56.00% 89.00% 97.00% 0.00%
σ = 0.05 1.00% 0.00% 0.00% 87.00%

Fig. 3: Success rate of extracting Betti numbers of a ball made of 4000 points
corrupted with noise σ with WitC and GSC with different σ values

Fig. 4: Data used for learning
the Betti numbers of a sphere

Fig. 5: Generative model learnt from
a distribution of a sphere

The GSC model can have very good performances, but it really depends on
the variance parameter. Such a parameter does not exist in WitC. WitC bad
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results on the sphere can be explained by its weakness towards noise. The sphere
problem is the most difficult because a 2-dimension manifold is corrupted by a
3-dimension noise, which makes it look like a ball.

6 Conclusion

The GGSC is the first generative model capable of extracting the Betti numbers
of data drawn from a manifold, corrupted with noise. If the second Betti number
or upper is non-zero, it means there are cycles or holes in the data distribution:
projection in lower dimension may contain tears or false-neighbourhood. GSC
has a dependancy on the variance parameter, that we intend to learn automati-
cally. It takes about three minutes to compute a GSC in the case of the sphere;
computing the initial probability densities with quasi Monte-Carlo and the De-
launay Complex are the two longest steps. We compared the GSC to the WitC,
but we plan to compute the persistance of homology [8] to be more accurate.
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