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Quantile regression with multilayer perceptrons.
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Abstract. We consider nonlinear quantile regression involving multilayer
perceptrons (MLP). In this paper we investigate the asymptotic behavior
of quantile regression in a general framework. First by allowing possibly
non-identifiable regression models like MLP’s with redundant hidden units,
then by relaxing the conditions on the density of the noise. In this paper,
we present an universal bound for the overfitting of such model under weak
assumptions. The main application of this bound is to give a hint about
determining the true architecture of the MLP quantile regression model.
As an illustration, we use this theoretical result to propose and compare
effective criteria to find the true architecture of such regression model.

1 Introduction

Quantiles are points taken at regular intervals from the cumulative distribution
function (CDF) of a random variable. Some g-quantiles have special names :
The 2-quantile is called the median, the 4-quantiles are called quartiles and the
10-quantiles are called deciles.

We can define the quantile through a simple alternative expedient as an
optimization problem. Just as we can define the sample means as the solution to
the problem of minimizing a sum of squared residuals, we can define the median
as the solution to the problem of minimizing a sum of absolute residuals. More
generally, if y1, -+ ,y, are observed values, solving

min > pr (g = m) (1)

where the cost function p.(z) = 7 X (2) X Ig+(2) — (1 = 7) X z x 1z-(2) is
the tilted absolute function. Having succeeded in defining the unconditional
quantiles as an optimization problem, it is easy to define conditional quantiles
in an analogous fashion. To obtain an estimate of the conditional quantile, we
simply replace the scalar m in the equation 1 by a function f(x;), where z; are
the covariate variables.

2 The model

The basic model is a possibly nonlinear regression model with an additive error.
It is given by
Yi = fo(Xt) + e (2)
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Where (Y;);<,<,, are the observations, (X;),.,, are random covariates and
(€¢);<;<n are unobserved error term. The regression function fy is assumed to
be an MLP function with & hidden units can be written :

k
fo(z) = 5+Zaz¢(’w;ﬁ$+bi) ;

i=1
with 8 = (8,a1, -+ ,ak, b1, - ,bg, w11, ,Wid, - ,Wg1, - ,Wkq) the parame-
ter vector of the model and ¢ a bounded transfer function, usually a sigmoidal
function. 6 belongs to O, C RF*(@+2)+1 5 compact (i.e. closed and bounded)
set of possible parameters. The quantile regression estimator f@T is obtained by
solving the optimization problem :

mingee, M (fo) (3)
with M7 (fo) = S0y pr(yi — fo(xi))

For a function p,(.) equal to
pr(2) = 7 % (2) X T () — (1= 7) x 2 x 1n-(2) ()

In the sequel, let fg_ be a, possibly not unique, function such that

for = axg guin M(fa) with M(fa) = [ poly = fo(@)dP(v). )
fo. is the optimal function for the theoretical quantile regression problem.

2.1 Asymptotic distribution

If the possible functions fy are parametric, identifiable and smooth enough func-
tion and if the density of the noise exists and is positive then asymptotic normal-
ity of the M-estimator can be shown (see Koenker and Basset [1] for the linear
case and Weiss [6] for the non-linear case and %—quantﬂe). However it is possible
to give more general results using empirical processes theory. In this paper we
prove a general bound valid even if the optimal functions fp_ are not unique and
without assumptions on the density of noise, except moment conditions.

2.1.1 A general bound for M (fp)

We will prove an inequality bounding the difference:

My (fo) — M (fo.)-

For an square integrable function ¢(X,Y) the Ly norm is:

lg(X, V)2 := V / 62z, y)dP(z, ).
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Let A > 0 be a constant, the generalized derivative function is defined as:

= Ao (Y —fo(X)) _ ~Apr (Y= fo, (X))
A o —3p7 (Y —Jg, (X))
dO(va)* e Apr (Y —fo (X)) _ ~2pr (Y —Ffg (X))
I X (V= T, (X)) ll2 (6)
e er (Y £ (X)) =Apr (Y o, (X))
- He—APr(Y—fe(X))—%P-r(Y—feT(X))71|‘2

and let us define (dy)_ (x,y) = min {0,d;(z,y)}. For now, let us assume that

dg‘ is well defined, this point will be discuss later. We can state the following
inequality:

Inequality:
for A >0,

iy dy (i, yi
sup % (M7 (fo,) — M7 (f)) < - sup izt %o (Tioti)
0€0 2 peo, S (dQL (i, i)

(7)

Proof:
The proof is very similar to the proof for the least square estimator obtained by
Rynkiewicz [4]. We have

(M (fo,) — M7 (fo)) = (X)) —Apr (Y=g (X))
—Apr (Y =fg (X)) _ _—Apr —Jor
EEI o (14 [ e S o )
S sup Ao (Y= (X)) _ = 2pr (Y= fg_ (X)) % Z:‘L:I log (]. +pd2(1'17 y?))
0<p<|| X7 (YT, (X)) 2

n 2 n 2
< sup,z0 + (P00 (@) = 5 X0 ()7 (wiws))

Since for any real number u, log(1l +u) < u — %u% Finally, replacing p by the
optimal value, we found

n A
M7 —MT < 12t dp(@iyi)
( n(f@-,—) n(fe)) = 2X Z?:l(dé\)z_(migyi)
| |

This inequality allows to prove that M (fg,) — M (fs) is bounded in prob-
ability under simple assumptions. This may be applied to model selection as
discussed in the next section.

2.2 Application : selection of models
In this section, the set © of possible parameters will be set to
@ = U?:l @k,

with O, C Oy, for k1 < ks and K is a, possibly huge, fixed constant. Let k° be
the minimal dimension of the functional space needed to realize the true regres-
sion function f,. For multilayer perceptron ©; may be set of MLP with k£ hidden
units. We define the minimum-penalized estimator of k°, as the minimizer k of

T (k) = min (M (fo) + an(k)) (8)
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Let us assume the following assumptions:

(A1) an(.) is increasing, n x (an (k1) — an(k2)) tends to infinity as n tends to
infinity, for any k1 > k2 and a,, (k) tends to 0 as n tends to infinity for any
k.

(A2) It exists A > 0 so that {d},0 € ©} is a Donsker class (see van der Vaart

[5])-

We now have:
Theorem: R
Under (A1) and (A2), k converges in probability to the true dimension kU.

The proof of this theorem is exactly the same as in Rynkiewicz [4].

The assumption (A1) is fairly standard for model selection, in the Gaussian
case (A1) will be fulfilled by BIC-like criteria. The assumption (A2) is more
difficult to check. First we note:

oMo (Y =Fo(X))=pr (Y= fo, (X)) _ 1)% =
=2 P (Y=o (X)) —pr (Y = fo, (X)) _ 9p=A(pr(Y—Fo(X))=pr (Y= fo, (X)) 4 1

So, dj is well defined if E [6_2)‘(”*(Y_f9(X))_”*(Y_f"f(X)))} < 00, Since an MLP
function is bounded, d}) is well defined if Y admits exponential moments. Finally,
using the same techniques of reparameterization as in Rynkiewicz [3], assump-
tion (A2) can be shown to be true for linear regressions or MLP models with
sigmoidal transfer functions, if the set of possible parameters © is compact.

3 A little experiment

The theoretical penalization terms of the previous section can be chosen among
a wide range of functions (see condition A1). In the sequel, a little experiment is
conducted to assess the right rate of penalization to guess the “true” architecture
of a model.

Consider a simulated model:

Y, :FQO(XltaXQt)+5t7t: ]-a y 1,

with ((Xlla Xgl), ety (Xlna Xgn)) lld7 (Xlta XQt) ~ N (OR2, 3- IQ), where IQ is
the identity matrix. The noise sequence €1, ..., €, is independent and identically
distributed following a Gaussian distribution A(0,1) and

Fpo(x1,22) = tanh(6 -1 — 2 - x9) + 2 - tanh(8 — z1 + 3 - x2) )
—3-tanh(2—6-21 —2-22) + 1.5.

Here, the true model is an MLP with 2 inputs, 3 hidden units and one output.
In order to avoid too long time of computation, the number of hidden units is
assumed to be between 1 and 10.

64



ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

Let D be the size of the parameter vector (the dimension of the model or
the number of weights of the MLP), we consider the quantile regression with
7 = 0.5, so we minimize the sum of absolute residuals.

We will compare 3 criteria, from the least penalized (AIC like) to the most
penalized (Very Strong Penalization), the following penalized criteria are as-
sessed:

o AIC like: L3°7  pos (20 — Fylw,ye)) x (14 22)

e BIC like: %Z?:l po.s (2t — Fo(xe,y1)) X (1 + Dlzgn>

e SP (Strong Penalization): 2 3% | pos (2 — Fo(x, y1)) X (1 + DT\/E>

We simulate n = 100, n = 500 and n = 1000 data according to the true model
(9), for each n the experiment is repeated 100 times.
The following architectures are chosen by the penalized criteria :

e n=100
nb h. units | 1 | 2 3 4 |5|16|7| 8 9 | 10
AIC like | modelssel. | 0| 0 13|10 |5 |6 | 2|10 |21 |33
BIC like | modelssel. |0 | 9 |8 | 3 |[0[1]|0| O 0 1
SP modelssel. |3 [36 (61| 0 |[0|0|0] O 0 0
e n=500
nb h. units | 1| 2 3 4 516 |7[8]9]|10
AIC like | modelssel. |0 0| 62 |19|13|5|1|(0|0| O
BIC like | modelssel. | 0| 0| 100 | O 0(0|10]0]O0O] O
SP modelssel. [ 0| 2| 98 0 0(0|10]0]O] O
e n=1000
nb h. units | 1 | 2 3 4 |5]|6|718]19]10
AIC like | modelssel. |00 | 72 |13 |7|6[0|2|0] 0
BIC like | modelssel. |0 |0[100| O [0O|O0O|0O]0O|0O| O
SP modelssel. |0]0[100| O |[O]O|0|O0|0] O

The BIC like criterion and the Strong Penalization chose often the true ar-
chitecture even for a small number of data. According to the theory, AIC like
criterion is not consistent (see condition A1) and the chosen architecture is al-
ways too large. The Strong penalization chose a too small architecture when
the number of data is small (n = 100), however it is a consistent criterion, so its
behavior is correct for larger number of data (n = 500 and n = 1000). The BIC
like criterion seems to be the best for this cost function.
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4 Conclusion

The conventional least squares estimator may be seriously deficient in case of
non-Gaussian errors. It seems reasonable to pay a small premium in the form of
sacrificed efficiency, in order to get more robust regression models. The class of
statistics model called “regression quantiles” are known to have good properties
under some restrictive assumptions. In this paper we have shown that some
results may be obtained under more general assumptions. We have proven an
inequality showing that overfitting of theses models is moderate if the noise
admits exponential moments. This bound justifies the use of penalized criterion
similar to the BIC criterion in order to fit the dimension of models. Finally, a
more challenging task may be to get a more precise tuning of penalization term
which, according to our result, can be chosen among a wide range of functions.
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