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Abstract. After successes at image classification, segmentation is the
next step towards image understanding for neural networks. We propose a
convolutional network architecture that includes innovative elements, such
as multiple output maps, suitable loss functions, supervised pretraining,
multiscale inputs, reused outputs, and pairwise class location filters. Ex-
periments on three data sets show that our method performs on par with
current in computer vision methods with regards to accuracy and exceeds
them in speed.

1 Introduction

Neural networks have a long history of usage for image classification, e.g. on
MNIST, NORB, and Caltech 101. For these datasets, neural networks rank among
the top competitors [1]. Despite the success, we should note that these image
classification tasks are quite artificial. Typically, it is assumed that the object of
interest is centered and at a fixed scale, i.e. that the localization problem has
been solved. Natural scenes rarely contain a single object or object class. Object
detection and object-class segmentation are thus the logical step towards general
image understanding. In this work, we propose variations of the convolutional
neural network (CNN) for object-class segmentation. Specifically, we show
that CNN can compete with state-of-the art object-class segmentation methods
on three common datasets, that supervised pre-training generally improves
performance and that during recall, CNN are faster than comparable approaches.

2 Methods

Network Architecture Our network architecture (Figure 1) extends the
standard CNN architecture [2]. In addition to the standard architecture, we
introduce several notable differences. Firstly, we use multiple maps for output,
since we are dealing with image-like outputs and a multi-class classification
problem. The cost function of the output map is either the pixel-wise cross

entropy loss Ege(y,0) = — >, y;In {exp (0:) /22, exp (oj)} (i. e. softmax) or the
pixel-wise squared e-insensitive loss after a sigmoid non-linearity Eei(y,0) =

max (0, |y; — (1 + exp(o;)) 7 — 5)2 . Here, y and o denote teacher and net output,
respectively. The choice of the loss function depends on the task: we choose F,
when we are interested in the best prediction per pixel and Fe; when classes are
evaluated separately. Secondly, we use a pretraining approach with intermediate

151



ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

\ Iy 1 Co - [ |

1. Input Layer O. Output Layer — Convolution = Max-Pooling

Fig. 1: Network with three convolutional layers. Dashed parts are optional: MS
multiscale inputs, RO reused outputs, PC pairwise class location filter.

output layers. In contrast to [3, 4], however, we do not discard pretraining results,
but reuse them as input to higher layers (RO in Figure 1). To achieve this, we
max-pool output layers and use an identity-initialized convolution to the next
output layer. With this, the next layer can focus on learning the difference to the
output of the previous layer. Thirdly, inspired by spatial pyramids, we provide
inputs at multiple, coarser scales to the network (MS in Figure 1). Finally, it was
found that in multi-class settings, long-range dependencies between classes can
be exploited [5]. We therefore add a pairwise class location filter (PC in Figure 1)
to the output, a convolution with a wide filter learned on top of the output layer.

“Valid” convolutions shrink the image by a margin proportional to filter size.
For flexibility, we keep the relative positions of teacher and the output map
constant. Therefore, before convolution, we pad each intermediate map with the
mean of that map, keeping the map size constant and largely avoiding border
effects as a result. Unless stated otherwise, our input resolution is 176 x 176 and
hidden layers have 32 maps. Filters of convolutions are initialized randomly [6].
Intermediate layers C; apply the non-linearity tanh(-) followed by a 2x2 maximum
pooling P;.

Preprocessing To facilitate batch processing on GPU, we first scale the
image and place it in the center of a fixed-size square image. From the squared
RGB images, we extract two kinds of feature, zero phase whitening (ZCA)
and histogram of oriented gradients (HOG). A convolutional 5 x 5 x 3 ZCA
whitening transform removes first-order correlations between neighboring pixels
and between color channels. HOG is computed for a single scale with five non-
oriented bins. The resulting eight maps are standardized to zero mean and unit
variance separately. Teachers, given as a map of class indices, are transformed
into one map per class, which has value one iff the pixel is associated with the
class. In addition, we create a “don’t care” mask, which is used to eliminate
gradients from parts of the square image which do not belong to the original
image or are not labeled in ground truth.
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Fig. 2: (a) Pairwise class location filters (PC) learned for MSRC-9. Black
represents more positive weights. Each prior is normalized separately (right: all
normalized together). (b) PC repairs spurious observations. Top row: original
and ground truth; bottom row: before and after PC.

Learning We use batch stochastic gradient descent with a learning rate of
nr = 1073 -0.977, where T denotes the epoch number. In pooling layers, the
error is propagated only to the location of the maximum—for details, see [7].

Similar to previous work [3, 8], we use supervised pre-training. Starting with
Oy, each output layer O; is trained for 50 epochs. Afterwards, the loss at O; is
fixed to zero, O; becomes a regular hidden layer, and O;y; is trained. Note that
the derivative of output layers with softmax S(x) simplifies considerably when
used in combination with cross-entropy loss. Here, we use softmax nonlinearities
in hidden layers and therefore have to use the more involved 9S;(x)/0x; =
Si(x)(6i5 — 95(x))-

All operations are performed on GPU using the CUV! library [9].

3 Results

To measure final outcome, we crop the region of the original image from the
(quadratic) output maps and scale up to the original image size.

We evaluate our architecture on three datasets. MSRC-9 [10] is a 9 class, 240
images dataset with about 70% of the pixels labeled. We split the dataset into a
stratified training and test set containing 50% of the images each. MSRC-21 is
an extended version of MSRC-9 containing 591 images with 21 labeled classes.
We again use the standard split into training, validation and test set [10]. The
common evaluation criterion for both is pixel-wise accuracy in labeled regions,
we consequently use E.(-,-). Finally, we evaluate on INRIA Graz-02 (IG02,
[11]). The dataset contains three classes in 479 training and 479 test images.
The evaluation criterion here is per-class precision/recall at equal error rate (PR~
EER), therefore we use F;(+,-). We augment all training sets with horizontally
flipped versions of the originals.

Table 1a summarizes our results for MSRC-9. We find that we perform best
when using RO+MS+PC, with 90.2% accuracy, improving on the previous result
of Grangier et al. [4] by 1.7%. Figure 2a shows the learned pairwise class location
filter for MSRC-9. It learned e. g., that “aeroplanes” are horizontally extended
objects and that to the left and right of cows, the probability for “building”

IPublicly available at https://github.com/deeplearningais/CUV
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(a) MSRC-9 (b) MSRC-21

Condition Accuracy Condition RO RO+PC

RO+PC+MS 90.2 1 Layer 45.4 49.4

RO+PC 89.8 2 Layer 71.0 76.9

regular 89.1 3 Layer 76.0 7.7

no pretraining 87.9 3 Layer+MS 77.9 80.2

Grangier et al. [4] 88.5 4 Layer T s
Gould et al. [5] 70.1 7.8

Ladicky et al. [13] 86.0

Table 1: Segmentation results for the MSRC datasets

Fig. 3: Example segmentations for MSRC-9 (top row), MSRC-21 (center row),
IG02 (bottom row). Left column shows original image, center column our output,
right column ground truth. MSRC has ground truth “void” mask superimposed.

low. As demonstrated in Figure 2b, this filter helps to remove spurious detections
where the classifier was unsure. Further example segmentations are displayed in
Figure 3.

For MSRC-21, we analyze the advantages of the pairwise class location filter
as we vary the number of layers (Table 1b). We find that PC improves the result
of the lower layers. The effect diminishes, however, when resolution becomes
too small (22 x 22 for 4 Layers). While our best result (80.2%) does not achieve
state-of-the art, it improves upon Gould et al. [5] who proposed the relative
location prior which inspired PC. Without pretraining, we get only 73.9%, which
emphasizes its importance.

On 1G02, we find that PC does not help as much (Table 2). We attribute
this to the structure of the dataset (one class per image, few classes in total).
Using RO only, we can already improve upon the previously best result [12] in
two out of three classes.

On a NVIDIA GTX 580, we process 16 images at once. A batch forward pass
through the best-performing network on 1G02 takes 0.23 s, which amounts to
approx. 70 images per second. We are currently rewriting the preprocessing to
work online. It can be executed concurrently to the forward pass on CPU. Our

154



ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

Condition Car Bike Person
RO 75.6  74.7 61.1
RO+PC 75.6 74.8 61.1
regular 744 T4.2 61.9
Fulkerson et al. [12] 722 722  66.3
LIN[14] 629 719 58.6

Table 2: INRIA Graz02 results

naive HOG implementation takes 0.04s/image at input resolution. While the
ZCA whitening transform amounts to a convolution and therefore takes less time
than the forward pass. Consequently, we expect framerates of > 10 fps, which
is an order of magnitude faster than e.g. speed-optimized work by Aldavert
et al. [14] (cf. their results in Table 2).

4 Related Work

While a large body of research focuses on object-class segmentation, most notably
associated with the Pascal VOC challenge?, only few works have attempted to
use a neural network architecture similar to ours.

The first attempt in the direction is made by Jain and Seung [3], who use
supervised pre-training for a denoising task and show that their approach has
relations to the optimization of a Markov random field. This work differs from
ours in the task (regression vs. classification), and in architecture, since the
authors do not reuse previous outputs.

Mnih and Hinton [8] use unsupervised pre-training for a network that classifies
roads in aerial images. Their dataset is not publicly available and the classification
problem is binary. The authors use methods from Jain and Seung for post-
processing only, while we continue training through the network.

Both, [3] and [8], train on image patches. We use convolutions instead, which
are faster since intermediate results are shared between adjacent locations.

Gould et al. [5] introduced the idea of a relative location prior in conditional
random fields, addressing the problem that certain classes have different proba-
bilities of co-occurrence depending on their relative spatial location. We draw
on their idea by explicitly learning filters that reduce errors of previous class
predictions.

Finally, Grangier et al. [4] used an architecture similar to ours. From their
brief description, many details of the algorithm remain unclear. In contrast to
their approach, we reuse the pretraining results. We directly compare our results
on MSRC-9 with theirs.

In contrast to most neural networks for image processing, we use densely
extracted image features to complement raw color channels.

2http://pascallin.ecs.soton.ac.uk/challenges/VOC/
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5 Conclusion

We presented a convolutional neural network architecture for object-class segmen-
tation, which achieves state-of-the-art performance on common vision datasets.
Crucial factors for good performance are supervised pretraining and pairwise
class location filters. The network can be parallelized well on GPU and exhibits
very good recall times. The outputs of our network still do not look visually
pleasing. To this end, we are currently experimenting with conditional random
fields to make class boundaries respect image edges.
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