
gNBXe – a Reconfigurable Neuroprocessor for
Various Types of Self-Organizing Maps

Jan Lachmair1, Erzsébet Merényi2, Mario Porrmann1, Ulrich Rückert1 ∗

1- University of Bielefeld - Cognitronics and Sensor Systems
Bielefeld - Germany

2- Rice University - Department of Statistics
Houston, Texas, U.S.A.

Abstract. In this paper we present the FPGA-based hardware ac-
celerator gNBXe for emulation of classical Self-Organizing Maps (SOMs)
and Conscience SOM (CSOM) in a multi-FPGA environment. After dis-
cussing how the CSOM is mapped to a resource-efficient digital hardware
implementation, we present how the modular system architecture can be
flexibly adapted to various application datasets. The hardware costs and
scalability of a multi-FPGA based accelerator using Xilinx Virtex2 and
Virtex4 FPGAs are discussed. Compared to a state-of-the-art multi-core
PC, a speedup of 9.1 is achieved for a CSOM with 4, 840 neurons and 196
synaptic weights.

1 Introduction

Since SOMs were first characterized [1], they became an important tool in ana-
lyzing high-dimensional data such as those in hyperspectral imaging tasks [2, 3]
or medical research [4]. Following the principle of operation of the human neo-
cortex, a SOM is able to generate a spatially ordered map of functional classes
from input space. Some of the main advantages using SOMs for analyzing high-
dimensional data are the unsupervised learning and the unique visualization
possibilities. Although parallelism is increasing in today’s microprocessor archi-
tectures, the software-based simulation of large and high-dimensional SOMs still
suffers from the mainly sequential processing. Dedicated hardware accelerators
as proposed, e.g., in [5, 6] offer an energy-efficient way to speed up SOMs uti-
lizing their high inherent parallelism. However, hardware accelerators often lack
flexibility and provide only limited data precision. The proposed hardware ac-
celerator is based on the single-FPGA gNBX neuroprocessor [5] and extends the
architecture towards a flexible multi-FPGA based SOM accelerator. In addition
to an enhanced scalability, leading to a nearly linear speed-up, we extended the
instruction set of our gNBX neuroprocessor towards the simulation of CSOMs
according to [7]. In the following section the CSOM algorithm and its realiza-
tion in digital hardware will be introduced. Section 3 details the modular system
architecture and its partitioning. In section 4 the performance of the architec-
ture is evaluated based on an implementation on an FPGA-based prototyping

∗This research is partially supported by the Center of Excellence Cognitive Interaction
Technology (CITEC).

645

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

system. The performance of the accelerator and the hardware costs for different
FPGAs are demonstrated using a real-world problem.

2 Conscience SOM implementation

The classical SOM algorithm causes a magnification of frequently presented in-
put data of a single cluster. This magnification effect results in a proportional
under-representation of sparsely used clusters. The associated magnification fac-
tor ρ describes the relation between the point density D() of the SOM weights
(wi) in the input space and the probability density function P () of the stimuli
data as D(w) ∝ P (w)ρ [8]. To maximize the information in the trained SOM, a
magnification factor of 1 is desired. It is shown in [9] that the CSOM achieves
a magnification factor of 1 also for higher dimensional data. The magnification
factor of 1 is achieved by adding a bias value gi (the conscience) to the calcu-
lation of the distance between input vector x and wi (equation (1)) to ensure
that a neuron which was recently the best matching unit (BMU) won’t shortly
be the BMU again.

‖x(t)−wc(t)‖p − gc(t) < ‖x(t)−wi(t)‖p − gi(t) ∀i �= c (1)

gi(t) = γ(t)

(
1

l
− Fi(t)

)
(2)

Fi(t) = Fi(t− 1) + β(t)(yi − Fi(t− 1)) (3)

wi(t+ 1) = wi(t) + hc,i(t)[x−wi]; hc,i(t) =

{
α(t) if ‖rc − ri‖p ≤ 1
0 if ‖rc − ri‖p > 1

(4)

The parameter c is the index of the winner neuron, l is the number of neurons in
the SOM (static for classical SOM and CSOM) and Fi is the winning frequency of
neuron i. The bias gi (equation (2)) is calculated at each learning step. The bias
depends on the user parameter γ and the winning frequency Fi (equation (3)).
The user controlled parameters (α, β, γ) have to decrease during simulation
in order to strengthen already learned information. The parameter yi is 1 for
the BMU and 0 for each other neuron. In contrast to classical SOM the CSOM
only updates the immediate lattice neighbors (i.e., neighborhood function hc,i =
constant box function of radius 1)(equation (4)). An advantage when mapping
the conscience SOM to our hardware is the similarity between the calculation of
gi and Fi to the weight update algorithm of the classical SOM. During weight
update the distance between each neuron and the BMU in the lattice has to
be calculated and the prototypes of the BMU (wc) as well as the prototypes
of its neighbor neurons are adapted according to equation (4). Because of the
similarity between the calculation rules for Fi as well as gi and the weight update
calculation also necessary for classical SOMs, Fi and gi can easily be calculated
without the need of additional calculation units. Another advantage when using
CSOM is the constant neighborhood function hc,i which can be realized much
easier in hardware than a Gaussian function, often used in classical SOMs. For
hardware implementation of the CSOM algorithm, the instruction set of the

646

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

PE
(0,0)

Processing field

PE
(0,1)

PE
(0,2)

PE
(1,0)

PE
(1,1)

PE
(1,2)

data + address
control

results

WTA support unit

result FIFO

data cache

adaptation cache
Parameter registers

and
macro commands

Local controller

size x

size y

layers x

layers y

vector dim.

num vec.

measure

commands
state signals

HOST

Global
Control

unit

SDRAM

Fig. 1: Principle of the modular system architecture

gNBX has been extended to support bias and winning frequency calculation. The
numbers of clock cycles for the two most computationally intensive operations
– distance calculation and BMU localization (tCD FB) and spreading adaptation
values and neuron adaptation (tSA AD) – are given by:

tCD FB = num layers ∗ (14 + dim(x) + sum width) + 12

tSA AD = num layers ∗ (11 + dim(x) + p norm) + 4

The parameter num layers is the number of neurons each processing element
(PE) has to simulate sequentially (see section 3). The number of synaptic cir-
cuits is represented as dim(x). In case of a diamond neighborhood shape the
parameter p norm will be set to 1 and in case of a squared shape it will be
set to 2. The parameter sum width depends on the desired calculation preci-
sion (data width) as well as on the available address space (addr width) of the
PEs and is set to sum width = 2 ∗ data width+ addr width to realize distance
calculation with full precision.

3 Modular system architecture

The modular system architecture (figure 1) of our hardware accelerator is spec-
ified in VHDL and optimized for Xilinx FPGAs. It consists of a central control
FPGA including the global controller (GC) and several PE-FPGAs. The cal-
culation precision, the number of processing elements per FPGA, and the local
memory space of each processing element can be flexibly chosen using VHDL
generic parameters. The global controller connects the accelerator to the host
system, manages the training and adaptation data, finds the global BMU, and
controls the simulation process. The PE-FPGAs consist of a local controller,
parallel processing elements each capable to simulate one or more neurons, and
a winner takes all (WTA) unit determining the local BMU. The local controller

647

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

RAM
COMP.

SELECT
COMP.
+

REG

1

SUM
COMP.
+

REG

ALPHA
COMP.
+

REG

bus

Adapt
BM_bias
Param.
REG

-

MUX

MUX

-1

X

<<

MUX

MUX

+

MUX bus
REG

State
REG

State
REG

Fig. 2: Architecture of the gNBXe processing elements

translates the macro commands from the GC to control signals for the PEs. The
availability of training and adaptation data is managed using additional cache
structures. The architecture of the gNBXe processing elements is depicted in
figure 2. The data path of the gNBXe-PE is realized in a pipeline structure
including additional pipeline bypasses for increased performance. To efficiently
realize the p2 norm (euclidean), each PE integrates an embedded multiplier of
the Xilinx FPGA. Another design goal was a high flexibility with respect to the
number of available neurons. Therefore, each processing element is capable of
performing the calculations for multiple neurons. The number of neurons that
can be emulated by a single PE is only limited by the available memory. Each
neuron is represented by an individual address (the position in the r-dimensional
map) and its synaptic weights. Both parts are stored in the local address space
of a PE, requiring dim(w) + dim(r) addresses. For CSOM each neuron needs
an additional address to store its winning frequency. Therefore, in a local ad-
dress space of k addresses up to �k/(dim(w) + dim(r))	 neurons can be stored
and calculated sequentially for SOM simulation and �k/(dim(w) + dim(r) + 1)	
neurons for CSOM.

4 Performance Evaluation

To demonstrate the performance of the hardware accelerator a hardware imple-
mentation with 16 Bit precision, 2048 local addresses, and a clock frequency
of 50 MHz was chosen. The accelerator has been implemented utilizing the
RAPTOR-X64 prototyping system [10] using four PE-FPGAs (Xilinx Virtex-
2Pro as well as Xilinx Virtex-4) and a Xilinx Virtex2-4000 to implement the
global controller. Table 1 shows the hardware costs and the number of available
neurons for the gNBXe using Xilinx Virtex-2Pro and Virtex-4 FPGAs. Because
the gNBXe is the only existing hardware accelerator for CSOM, an optimized
software implementation of the CSOM running on a Core-i7 950 Quad Core at

648

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

Table 1: Hardware costs, available processing elements (PEs) and possible num-
ber of neurons (NN) for different Xilinx FPGAs using 16 Bit precision, 2k local
address space and varying number of synaptic weights (d).

V2P30 4× V2P30 V4FX100 4× V4FX100

PEs(max) 36 144 121 484

Slices 13220(96%) 52880 40586(96%) 162344

RAMB16s 82(60%) 328 252(67%) 1008

MULT18x18s 36(26%) 144 121(75%) 484

NN (d = 2000) 36 144 121 484

NN (d = 100) 684 2736 2299 9196

NN (d = 8) 6696 26784 22506 90024

0 1000 2000 3000 4000 50000

200

400

600

800

1000

NN

Corei7 950 @ 3,07 GHz
gNBX 1 x Virtex4 a 11 x 11 PEs
gNBX 2 x Virtex4 a 11 x 11 PEs
gNBX 3 x Virtex4 a 11 x 11 PEs
gNBX 4 x Virtex4 a 11 x 11 PEs
gNBX 4 x Virtex2 a 5 x 5 PEs
gNBX 3 x Virtex2 a 5 x 5 PEs

[s]

0 500 1000 1500 20000

500

1000

1500

NN

Corei7 950 @3.07 GHz
gNBXe 4 x V4 with 11 x 11 PEs
gNBXe 3 x V4 with 11 x 11 PEs
gNBXe 2 x V4 with 11 x 11 PEs
gNBXe 1 x V4 with 11 x 11 PEs
gNBXe 3 x V2P with 5 x 5 PEs

[s]

Fig. 3: Execution time for learning 26, 214, 400 vectors with dim(x) = 8 (left)
and for learning 15, 964, 000 vectors with dim(x) = 196 (right)

3.07 GHz is used as a reference implementation. The software implementation
is written in C++ with double precision and multi-threading enabled using the
OpenMP library. The hardware accelerator and the software reference imple-
mentation are identically parameterized and trained using a Matlab frontend.
Two different datasets are used to evaluate the performance of the implemen-
tations during learning. The first dataset is a 512 × 512 pixel image with 8
spectral bands for each pixel analyzed with software CSOMs in [3]. The second
dataset is a hyperspectral image with 614 × 260 pixel and 196 spectral bands
analyzed with software CSOMs in [2]. To compare the different FPGA types,
the different number of FPGAs, and the software implementation running on
the Core-i7 QuadCore the execution time of the Core-i7 for training all vectors
in 100 epochs is measured and compared with the calculated hardware execution
time of the gNBXe. The deviation between measured and modeled execution
time is less than 0.4% for the core algorithm including initializing of the neuron
map as well as read back of the map to the SDRAM of the GC. As can be seen
in the left diagram in figure 3, the Core-i7 profits from its high clock speed and
multi-core architecture. The older Virtex2 FPGAs using 25 neurons in parallel

649

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

per FPGA are slower than the softwae implementation on the Core-i7. Using
the newer Virtex4 FPGAs, a speed-up of about three can be achieved compared
to the Core-i7. Even bigger speed-up is achieved for higher-dimensional data.
For the second dataset, the FPGA implementation outperforms the Core-i7 by
a factor of 9.1 when utilizing four Xilinx Virtex4 FX100 FPGAs. If the number
of neurons is lower than the number of available PEs the hardware execution
time stays constant for different map sizes since the available parallelism is not
fully utilized. For all measured test cases, the time needed for communication
with the host computer does not exceed one percent of the overall computation
time.

5 Conclusion

We have shown that the proposed gNBXe-based multi-FPGA hardware accelera-
tor for SOMs and CSOMs significantly speeds up simulation of high-dimensional
datasets compared to state-of-the-art multi-core PCs. As a next step we aim to
extend the reconfigurable hardware accelerator towards the emulation of addi-
tional artificial neural networks. Furthermore, the number of PE-FPGAs will
be increased and high-speed serial IOs will be used for communication between
the GC and the PEs to further increase the scalability of the system.

References

[1] T. Kohonen. Automatic formation of topological maps of patterns in a self-organizing
system. In E. Oja and O. Simula, editors, Proceedings of 2SCIA, Scand. Conference on
Image Analysis, pages 214–220, Helsinki, Finland, 1981.

[2] E. Merényi. ”Precision Mining” of High-Dimensional Patterns with Self-Organizing Maps:
Interpretation of Hyperspectral Images. Quo Vadis Computational Intelligence: New
Trends and Approaches in Computational Intelligence, 2000.

[3] E. Merenyi, K. Tasdemir, and L. Zhang. Learning Highly Strutured Manifolds: Harnessing
the Power of SOMs. Springer Verlag.LNAI 5400, 2009.

[4] D. G. Covell, A. Wallqvist, A. A. Rabow, and Thanki N. Molecular classification of
cancer: Unsupervised self-organizing map analysis of gene expression microarray data.
Molecular Cancer Therapeutics, 2:317–332, March 2003.

[5] C. Pohl, M. Franzmeier, M. Porrmann, and U. Rueckert. gNBX – Reconfigurable Hard-
ware Acceleration of Self-organizing Maps. In Proc. IEEE Int Field-Programmable Tech-
nology Conf, pages 97–104, 2004.

[6] D.C. Hendry and R. Cambio. Techniques for power reduction in an simd implementation
of the vq/som algorithms. Neurocomputing, 74(1-3):291 – 300, 2010.

[7] D. DeSieno. Adding a conscience to competitive learning. In Proc. IEEE Int Neural
Networks Conf, pages 117–124, 1988.

[8] H.-U. Bauer, R. Der, and M. Herrmann. Controlling the Magnification Factor of Self-
Organizing Feature Maps. Neural Computation, 8(4):757–771, 1996.

[9] E. Merenyi, A. Jain, and T. Villmann. Explicit magnification control of self-organizing
maps for “forbidden” data. IEEE Trans. on Neural Networks, 18(3):786–797, 2007.

[10] M. Porrmann, J. Hagemeyer, C. Pohl, J. Romoth, and M. Strugholtz. RAPTOR A
Scalable Platform for Rapid Prototyping and FPGA-based Cluster Computing. In Pro-
ceedings of the International Conference on Parallel Computing, ParCo2009, Symposium
on Parallel Computing with FPGAs, Lyon, France, 1 - 4 September 2009.

650

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

