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Abstract. We present a new mixture model-based discriminant anal-
ysis approach for functional data using a specific hidden process regres-
sion model. The approach allows for fitting flexible curve-models to each
class of complex-shaped curves presenting regime changes. The model pa-
rameters are learned by maximizing the observed-data log-likelihood for
each class by using a dedicated expectation-maximization (EM) algorithm.
Comparisons on simulated data with alternative approaches show that the
proposed approach provides better results.

1 Introduction

Most statistical analyses involve vectorial data when the observations are pre-
sented by finite dimensional vectors. However, in many application domains,
the observations are functions or curves. The general paradigm for analyz-
ing such data is known as ‘Functional Data Analysis’ (FDA) [7]. The goals
of FDA include data representation for further analysis, data visualization, ex-
ploratory analysis by performing unsupervised approaches, classification, etc. In
this study, we focus on supervised functional data classification (discrimination)
where the observations are temporal curves presenting regime changes over time.
The problem of curve classification, as in the case of multidimensional vectorial
data classification, can be addressed by learning generative or discriminant clas-
sifiers. Among the discriminative approaches, one can cite the one based on
support vector machines [8]. The generative approaches are essentially based
on regression analysis, including polynomial or spline regression [1, 4, 6], or also
generative polynomial piecewise regression as in [1, 2]. The generative mod-
els aim at understanding the process generating such data to handle both the
problem of heterogeneity between curves and the process governing the regime
changes, in order to fit flexible models that provide better classification results.
In this paper, we propose a new generative approach for modeling classes of
complex-shaped curves where each class is composed of unknown sub-classes. In
addition, the model is particularly dedicated to address the problem when each
homogeneous sub-class presents regime changes over time. We extend the func-
tional discriminant analysis approach presented in [2], which relates modeling
each class of curves presenting regime changes with a single mean curve, to a
mixture formulation that leads to a functional mixture-model based discriminant
analysis. More specifically, this approach reformulates the entirely unsupervised
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mixture of regression models with hidden logistic processes (MixRHLP) [1, 9]
into a supervised functional data classification framework. The resulting dis-
crimination approach is a model-based functional discriminant analysis in which
each class of curves is modeled by a MixRHLP model. In the next section we
give a brief background on discriminant analysis approaches for functional data
and then we present the proposed mixture model-based functional discriminant
analysis with hidden process regression. Let us denote by ((x1, y1), . . . , (xn, yn))
a given labeled training set of curves issued from G classes with yi ∈ {1, . . . , G}
the class label of the ith curve. Assume that each curve xi consists of m obser-
vations xi = (xi1, . . . , xim), regularly observed at the time points t1 < . . . < tm.

2 Functional Discriminant Analysis

Functional discriminant analysis extends discriminant analysis approaches for
vectorial data to functional data or curves. From a probabilistic point a view, the
class conditional density is assumed to be a (parametric) density defined in the
functional space rather than in a finite dimensional space of the multidimensional
data vectors. Assume we have a labeled training set of curves and the class
parameter vectors (Ψ1, . . . ,ΨG) where Ψg is the parameter vector representing
the density of class g (g = 1, . . . , G). In functional discriminant analysis, a new
curve xi is assigned to the class ŷi using the Bayes rule, that is:

ŷi = arg max
1≤g≤G

wgp(xi|yi = g, t;Ψg)∑G
g′=1 wg′p(xi|yi = g′, t;Ψg′)

, (1)

where wg = p(yi = g) is the prior probability of class g and p(xi|yi = g, t;Ψg)
its density. The class conditional density can be defined as the one of a polyno-
mial regression model, polynomial spline including B-spline [6], or a generative
piecewise regression model with a hidden process [2] when the curves further
present regime changes over time. These approaches lead to functional linear
(or quadratic) discriminant analysis.

2.1 Functional Linear Discriminant Analysis

Functional Linear (or Quadratic) Discriminant Analysis [6] arises when we model
each class conditional density of curves p(xi|yi = g, t;Ψg) by a single model. The
class conditional density can for example be the one of a polynomial, spline or
B-spline regression model with parameters Ψg, that is:

p(xi|yi = g, t;Ψg) = N (xi;Tβg, σ
2
gIm), (2)

where βg is the coefficient vector of the polynomial or spline regression model
representing class g, σ2

g the associated noise variance and T is the matrix of
design which depends on the adopted model (e.g., Vandermonde matrix for
polynomial regression). A similar approach that fits a specific regression model
governed by a hidden logistic process to each of the G homogeneous classes of
curves presenting regime changes has been presented in [2]. However, all these
approaches, as they involve a single model for each class, are only suitable for
homogeneous classes of curves. For complex-shaped classes, when one or more
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classes are dispersed, the hypothesis of a single model description for the whole
class of curves becomes restrictive. This problem can be handled, by analogy to
mixture discriminant analysis for vectorial data [5], by adopting a mixture model
formulation in the functional space. This functional mixture can for example be
a polynomial regression mixture or a spline regression mixture [1, 4]. This leads
to Functional Mixture Discriminant Analysis (FMDA).

2.2 Functional Mixture Discriminant Analysis with polynomial re-
gression and spline regression mixtures

A first idea on FMDA, based on B-spline regression mixtures, was proposed in
[4]. Each class g of functions is modeled as a mixture of Kg sub-classes, each
sub-class k (k = 1, . . . ,Kg), is a noisy B-spline function (and can also be a
polynomial or spline) with parameters Ψgk. The model is therefore defined by:

p(xi|yi = g, t;Ψg) =

Kg∑
k=1

αgkN (xi;Tβgk, σ
2
gkIm), (3)

where the αgk’s are the corresponding non-negative mixing proportions that sum
to 1, zi is a hidden discrete variable in {1, . . . ,K} representing the labels of the
sub-classes for each class. The parameters Ψg = (αg1, . . . , αgKg ,Ψg1, . . . ,ΨgKg )
of this functional mixture density can be estimated by maximum likelihood using
the EM algorithm [3, 4]. However, using polynomial or spline regression for class
representation, as studied in [1, 2] is more adapted for curves presenting smooth
regime changes and the knots have to be fixed in advance. When the regime
changes are abrupt, capturing the regime transition points needs to relax the
regularity constraints on splines which leads to piecewise regression for which the
knots can be optimized using a dynamic programming procedure. On the other
hand, the regression model with a hidden logistic process (RHLP) presented in
[2] and used to model an homogeneous set of curves with regime changes, is
flexible and explicitly integrates the smooth and/or abrupt regime changes via
a logistic process. As pointed in [2], this approach has limitations in the case
of complex-shaped classes of curves since each class is only approximated by a
single RHLP model. In this paper, we extend the discrimination approach in [2]
to a functional mixture discriminant analysis framework, where each component
density model for each homogeneous sub-class is assumed to be an RHLP model.
We may therefore overcome both the limitation of FLDA and FQDA which are
based only a single model for each class, by modeling each complex-shaped class
of curves using a mixture of RHLP models (MixRHLP). Furthermore, thanks
to the flexibility to the RHLP model for each sub-class, we will be able to
automatically and flexibly approximate the underlying regimes.

3 Proposed Functional Mixture Discriminant Analysis with
hidden process regression mixture

Let us suppose that each sub-class k (k = 1, . . . ,Kg) of class g itself is governed
by Rgk unknown regimes. We let therefore denote by hgkj ∈ {1, . . . , Rgk} the
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discrete variable representing the label of regimes for sub-class k within class g.

3.1 A mixture of RHLP models for each class of curves

In the proposed FMDA, we model each class of curves by a specific mixture
of regression models with hidden logistic processes (abbreviated as MixRHLP)
as in [1, 9]. According to the MixRHLP model, each class of curves g is as-
sumed to be composed of Kg homogeneous sub-groups with prior probabilities
αg1, . . . , αgKg . Each of theKg sub-groups is governed by Rgk polynomial regimes
and is modeled by a regression model with hidden logistic process (RHLP). The
RHLP model [2] assumes that each sub-class (or cluster) k of class g is gener-
ated by Kg polynomial regression models governed by a hidden logistic process
hgk = (hgk1, . . . , hgkm) that allows for switching from one regime to another
among Rg polynomial regimes over time. Thus, the resulting conditional distri-
bution of a curve xi issued from class g is given by the following mixture:

p(xi|yi = g, t;Ψg) =

Kg∑
k=1

αgk

m∏
j=1

Rgk∑
r=1

πgkr(tj ;wgk)N
(
xij ;β

T
gkrtj , σ

2
gkr

)
(4)

where Ψg = (αg1, . . . , αgKg , θg1, . . . , θgKg ) is the parameter vector of class g,
θgk = (wgk,βgk1, . . . ,βgkRgk

, σ2
gk1, . . . , σ

2
gkRgk

) being the parameters of each

of its RHLP component density
∏m

j=1

∑Rgk

r=1 πgkr(tj ;wgk)N
(
xij ;β

T
gkrtj , σ

2
gkr

)

where πgkr(tj ;wgk) represents the probability of regime r within sub-class k of
class g and is modeled by a logistic distribution, that is
πgkr(tj ;wgk) = p(hgkj = r|tj ;wgk) =

exp (wgkr0+wgk1tj)
∑Rgk

�=1
exp (wg�r0+wg�r1tj)

, with parameters

wgk = (wgk1, . . . ,wgkRgk
) where wgkr = {wgkr0, wgkr1}. The relevance of the

logistic process in terms of flexibility of transition has been well detailed in [2].
Notice that the key difference between FMDA with hidden process regression
and FMDA of [4] is that the proposed approach uses a generative hidden pro-
cess regression model (RHLP) for each sub-class rather than a spline; the RHLP
being itself based on a mixture formulation. Thus, The proposed approach is
more adapted for capturing the regime changes within curves.

3.2 Maximum likelihood estimation via the EM algorithm

The parameter vector Ψg of the mixture density of class g in Eq. 4 is estimated
by maximizing the observed-data log-likelihood. Given an independent training
set of labeled curves, the log-likelihood of Ψg is written as:

L(Ψg) =
∑

i|yi=g

log

Kg∑
k=1

αgk

m∏
j=1

Rgk∑
r=1

πgkr(tj ;wgk)N
(
xij ;β

T
gkrtj , σ

2
gkr

)
. (5)

The maximization of this log-likelihood is performed iteratively by a dedicated
EM algorithm [3]. The EM algorithm starts with an initial parameter Ψ(0)

g and
alternates between the two following steps until convergence:

E-step: Compute the expected complete-data log-likelihood given the obser-

vations ({xi|yi = g}, t) and the current parameter estimation Ψ(q)
g :

Q(Ψg,Ψ
(q)
g ) = E

[
Lc(Ψg ; {xi|yi = g}, z, {hgk}, t)|{xi|yi = g}, t;Ψ(q)

g

]
. (6)
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This step simply requires the calculation of the posterior sub-class probabilities:

γ
(q)
igk =

α
(q)
gk

∏m
j=1

∑Rgk
r=1 πgkr(tj ;w

(q)
gk )N

(
xij ;β

T(q)
gkr tj ,σ

2(q)
gkr

)

∑
K
l=1 α

(q)
gl

∏
m
j=1

∑Rgl
r=1 πglr(tj ;w

(q)
gl )N (xij ;β

(q)T
glr tj ,σ

2(q)
glr )

and the posterior regime

probabilities for each sub-class: τ
(q)
ijgkr =

πgkr(tj ;w
(q)
gk )N (xij;β

T (q)
gkr tj ,σ

2(q)
gkr )

∑Rgk
�=1 πg�r(tj ;w

(q)
g� )N (xij ;β

T (q)
g�r tj ,σ

2(q)
g�r )

·

M-step: Update the value of the parameter Ψg by maximizing the function

Q(Ψg,Ψ
(q)
g ) with respect to Ψg, that is: Ψ(q+1)

g = argmaxΨg
Q(Ψg,Ψ

(q)
g ). It

can be shown that the maximization of the Q-function can be performed by sep-
arate maximizations w.r.t the mixing proportions (αg1, . . . , αgKg ) and w.r.t the

regression parameters {βgkr , σ
2
gkr} and the hidden logistic process parameters

{wgk}. The mixing proportions updates are given by α
(q+1)
gk = 1

ng

∑
i|yi=g γ

(q)
igk.

The maximization w.r.t the regression parameters consists in performing sepa-
rate analytic solutions of weighted least-squares problems where the weights are

the product of the posterior probability γ
(q)
igk of sub-class k and the posterior

probability τ
(q)
ijgkr of regime r within sub-class k. The updates are:

β
(q+1)
gkr =

[ ∑
i|yi=g

m∑
j=1

γ
(q)
igkτ

(q)
ijgkrtjt

T
j

]−1 ∑
i|yi=g

m∑
j=1

γ
(q)
igkτ

(q)
ijgkrxijtj

σ
2(q+1)
gkr =

1∑
i|yi=g

∑m
j=1 γ

(q)
igkrτ

(q)
ijgkr

∑
i|yi=g

m∑
j=1

γ
(q)
igkrτ

(q)
ijgkr(xij − β

T (q+1)
gkr tj)

2· (7)

Finally, the maximization w.r.t the logistic processes parameters {wgk} consists

in solving multinomial logistic regression problems weighted by γ
(q)
igkτ

(q)
ijgkr which

we solve with a multi-class IRLS algorithm (e.g., see [1]).

4 Experiments on simulated curves

We perform comparisons between the proposed approach and alternative func-
tional discriminant analysis approaches and functional mixture discriminant
analysis approaches. The used criterion is the curve misclassification error rate
computed by a 5-fold cross-validation procedure. We consider simulated curves
issued from two classes of piecewise noisy curves. The first class is composed
of three sub-classes (see Fig 1), while the second one is a homogeneous class.
Each curve is composed of m = 200 points and consists of three piecewise con-
stant regimes. Table 1 shows the misclassification error rates obtained with the
proposed FMDA approach and the alternative approaches. As expected, it can
be seen that the FMDA approaches provide better results compared to FLDA
approaches. This is due to the fact that the class shape is complex (see Fig 1)
to be approximated by a single model as in FLDA. It can also be observed that
the proposed functional mixture discriminant approach based on hidden logistic
process regression outperforms the alternative FMDA based on polynomial or
spline regression. This performance is attributed to the flexibility of the logistic
process that it is well adapted for the regime changes.
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Figure 1: The complex-shaped class of curves (left) and the three sub-classes
obtained by the functional mixture model with hidden process regression.

Discrimination Approach Misclassification error rate (%)

Polynomial regression 21 ±(5.5)
FLDA Spline regression 19.3 ±(6.5)

Hidden process regression (RHLP) 18.5 ±(4)

Polynomial Regression Mixture 11±(5.94)
FMDA Spline Regression Mixture 9.5±(4.61)

Proposed FMDA with MixRHLP 5.3±(2.4)

Table 1: Obtained discrimination results for the simulated curves.

5 Conclusion

We presented a new approach for functional data classification by using a mix-
ture model-based functional mixture discriminant analysis which is based on a
hidden process regression model. Each class parameters are estimated by a dedi-
cated EM algorithm. The experimental results on simulated data demonstrated
the benefit of the proposed approach to addressing the problem of modeling
complex-shaped classes of curves as compared to existing alternative functional
discriminant methods. Future work will concern experiments on real data includ-
ing gene expression curves and 2-d functions from handwritten digits. We will as
well investigate using Bayesian learning to better control the model complexity.
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