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Abstract. The Fisher information metric defines a Riemannian space where 
distances reflect similarity with respect to a given probability distribution. This 
metric can be used during the process of building a relational network, resulting in 
a structure that is informed about the similarity criterion. Furthermore, the 
relational nature of this network allows for an intuitive interpretation of the data 
through their location within the network and the way it relates to the most 
representative cases or prototypes. 

1 Introduction 

Measures of similarity between data points are central to pattern recognition and data 
mining methodologies, although they are not always explicitly calculated. 
Nevertheless, using a distance function to measure similarity between pairs of 
elements of a space is an intuitive way to understand their relationship in the context 
of a particular problem domain. The Euclidean distance is a common choice because 
of its simplicity and little computational cost, even though the equal weighting of 
each dimension, for instance in clustering, leads to results that can be heavily 
dependent on the choice of data representation.  
The Fisher information (FI) is a natural choice of metric in the space of probabilistic 
density functions [1]. In the case of the space of the covariates, a natural similarity 
measure between points is provided by the symmetric divergence between the 
posterior distributions p(c|x) of classifiers fitted to the class labels, which are 
categorized by a discrete random variable C. The concept of a metric defined by 
differentiating a posterior distribution p(c|x) with respect to the coordinates is 
reported in [2] as a natural extension of the metric defined in parameter space, e.g. in 
[3]. In a recent publication [4], we explained in detail the process of deriving a metric 
from the Fisher information using linear and non-linear models and presented a novel 
approach to the problem of finding geodesic distances in non-Euclidean metrics. The 
idea in the present paper is to follow the same process and use the FI metric to go 
from the dataset in the original high-dimensional space to a network where data points 
are nodes connected to each other by edges based on their similarity. 
The resulting networks are analysed in terms of prediction accuracy and structure and 
the closing section discusses the interpretability of the classifier by identifying 
relevant reference cases.  
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2 Methodology 

This section provides a brief description of the FI metric derivation and discusses the 
choice of the method used to build the networks. 

2.1 Derivation of the Fisher information metric 

The FI is a local measure of the variation that an infinitesimal displacement of a point 
produces on the value of a probability distribution when evaluated at that point. 
Traditionally, the space where this displacement takes place is that of some parameter 
vector θ upon which the probability function depends. We are, however, more 
interested in the approach introduced in [2], where the space of interest is the primary 
data space, i.e. the space where the dataset under study lies. The data is assumed to be 
divided into classes, with p(c|x) representing the posterior probability of the class 
variable given a point in the data space. 
 
 
 
 
 
 
 
 

Fig. 1: Derivation of the FI metric 
 
Figure 1 outlines the process of deriving the FI metric. Initially we have a dataset 
along with the class membership of each of the points. Using a density estimator, we 
obtain the posterior distribution p(c|x). This estimate completely determines the 
metric in the sense that only a good model will produce a metric that reflects 
similarity accurately with respect to the true probability density. We use a multilayer 
perceptron (MLP) for this purpose because of its versatile architecture, which makes 
it ideal for non-linear data distributions. 
The FI takes the form of a square matrix of the same dimensionality as the data. It is 
obtained from the estimated density according to either of the two equivalent 
definitions in (1). 
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where Ep(c|x) is the conditional expectation over the values of the class label c with 
respect to p(c|x). The matrix defines a differential metric for the calculation of 
infinitesimal distances: ���, � + ���� = ���������� (2) 
This can be integrated to calculate the distance between any pair of points by using 
the path integral 
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where ��#� is a path that goes from �� = ��# = 0� to �� = ��# = 1�. At this point 
we can compute global distances in the space along a given path. The last part of the 
process is to find geodesic paths between points and to calculate their length. To do 
so, we use the free points approach. The reader is referred to [4] for an explanatory 
section on this algorithm. 

2.2 Construction of the networks 

Usual methods to build networks are k-nearest neighbours (kNN), where each data 
point is connected to the k nearest points, and ϵ-neighbourhood, where a connection is 
present when points are closer than a constant distance ϵ. kNN is preferred over ϵ-
neighbourhood because it is adaptive to scale and density, while the use of the latter 
can result in disconnected graphs. 
During the experiments carried out for this work, we applied kNN and b-matching. 
The b-matching method [5] is more rigorous than kNN in that it ensures that the final 
number of neighbours of each node is always the same. However, it only guarantees 
to converge if the linear programming relaxation of the formulation of the b-matching 
problem is tight [6]. In practice, when applying the algorithm to our data we found 
that it did not converge most of the time. For this reason, we only use kNN in this 
work.  

3 Experimental results 

In this section, we study the implications of the use of the FI metric in the 
construction of networks. Three aspects are discussed: the visualization power of 
networks, classification accuracies using kNN and the presence of network 
substructure. 
The synthetic data analysed in this study are modelled from samples extracted from a 
data base used in a previous publication [7]. Class (tumour type) labelling was used to 
generate posterior distributions of the data density, using single multivariate normal 
models fitted to the mean and variance/covariance matrices of class specific cohorts 
of single-voxel proton Magnetic Resonance Spectroscopy (SV 1H-MRS) from brain 
tumour patients.  
This synthetic set included samples of the generated data for 78 glioblastoma-like 
(GL), and 31 metastasis-like (ME) cases. The data dimensionality is 195 reflecting the 
clinically-relevant frequency intensity values measured in parts per million (ppm) that 
are typically sampled from each spectrum in the [4.24,0.50] ppm interval. A second 
dataset was generated for the validation of the methods. In this dataset, each class has 
50 samples generated using the same means and covariance matrices used for the 
training set. The discrimination between GL and ME, on the basis of SV 1H MRS 
information, is a very challenging problem due to their radiological similarities. The 
appearance of both pathologies is often dominated by large peak intensities 
corresponding to neutral lipids, a byproduct of necrosis [8].  
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3.1 Visualizing data using networks

Using networks to represent data is a 
data space is high-dimensional and direct examination is not possible. Similarity 
between points in the original space is captured by the 
enabling the viewer to 
Figures 2 and 3 show the kNN networks built from the dataset using Euclidean and 
Fisher distances respectively
corresponding to ME. 
network (Fig.3), with edges connected in a very local manner. The Euclidean network
(Fig.2), on the other side, presents a very fuzzy arrangement of the edges, 
grouping of the nodes is quite weak in terms of conn

Fig. 2: kNN network (k=3) using Euclidean distances

Fig. 3: kNN network (k=3) using Fisher distances
 
The information contained in the class labels is put in the form of 
by the FI metric and is captured in the network, producing an informative and 
intuitive visualization of the data that otherwise would be difficult to interpret

3.2 Classification rates

Tables 1 and 2 contain the classification accuracies u
classification (E-kNN and F
corresponds to the results with

Visualizing data using networks 

Using networks to represent data is a powerful visualization tool, especially when the 
dimensional and direct examination is not possible. Similarity 

between points in the original space is captured by the connections in the network,
enabling the viewer to see how the data looks like in terms of structure and clustering.
Figures 2 and 3 show the kNN networks built from the dataset using Euclidean and 
Fisher distances respectively, with black nodes representing GL cases and 

. It is immediate to see a much clearer structure in the Fisher 
, with edges connected in a very local manner. The Euclidean network

, on the other side, presents a very fuzzy arrangement of the edges, 
grouping of the nodes is quite weak in terms of connectivity within/between groups.

 
Fig. 2: kNN network (k=3) using Euclidean distances. Black = GL, white 

 
Fig. 3: kNN network (k=3) using Fisher distances. Black = GL, white = ME.

contained in the class labels is put in the form of a distance measure 
by the FI metric and is captured in the network, producing an informative and 
intuitive visualization of the data that otherwise would be difficult to interpret

Classification rates 

Tables 1 and 2 contain the classification accuracies using Euclidean and Fisher 
kNN and F-kNN, respectively) for different values of k. Table 2 

the results with the validation dataset. Fisher kNN obtains very good 
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nodes representing GL cases and white 
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a distance measure 
by the FI metric and is captured in the network, producing an informative and 
intuitive visualization of the data that otherwise would be difficult to interpret. 
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for different values of k. Table 2 
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accuracies as reported 
MLP. The second table 

Table 1: Classification rates on the training 

Table 2: Classification rates on the validation dataset
 
During the validation stage
Euclidean kNN results for small values of k, but the difference becomes more 
significant when the size of the neighbourhood increases. When this happens, the 
performance of E-kNN deteriorates
of neighbours are misclassified
reflecting heterogeneity in the local structure of the network. The stability of F
under this variation is caused by the FI metric 
high density of points
classes. This means that points away from the border form very c
homogeneous groups that are far away from the areas of mixed membership, therefore 
having more stable neighbourhoods with respect to k

3.3 Class substructure

Going back to Fig.3, we 
only because the classes are well separated, but also because 
are arranged forming small groups or clusters. In this section, we briefly look into 
some of these clusters 
The plots in Fig.4 are 
corresponding to the real GL spectrum. The four clusters are part of the GL class, and 
are circled in red in the miniature view of the network.

Figure 4: Mean spectra of the different clusters

 1 3 
E-kNN 0.83 0.8
F-kNN 0.99 0.99

 1 3 
E-kNN 0.72 0.79
F-kNN 0.77 0.80

 in the first table because these are the training samples
. The second table provides a more realistic impression. 

Table 1: Classification rates on the training dataset 

Table 2: Classification rates on the validation dataset 

During the validation stage, the use of the FI metric brings little improvement on the 
Euclidean kNN results for small values of k, but the difference becomes more 
significant when the size of the neighbourhood increases. When this happens, the 

kNN deteriorates, so points correctly classified for a small n
misclassified when more neighbours are taken into account

reflecting heterogeneity in the local structure of the network. The stability of F
under this variation is caused by the FI metric moving the areas of the space 
igh density of points from the same class away from the border regions between 

classes. This means that points away from the border form very compact
homogeneous groups that are far away from the areas of mixed membership, therefore 

neighbourhoods with respect to k. 

Class substructure 

Going back to Fig.3, we stated that a clear structure in the network is easy to see
only because the classes are well separated, but also because within each class
are arranged forming small groups or clusters. In this section, we briefly look into 

 to find out the differences between them. 
The plots in Fig.4 are the mean spectra of the points in each cluster, the first plot 

to the real GL spectrum. The four clusters are part of the GL class, and 
are circled in red in the miniature view of the network. 

 
Figure 4: Mean spectra of the different clusters. 
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The plots show how clusters from the same class are different in terms of the height 
of the two main peaks of the spectrum, which vary from group to group giving rise to 
a different “prototype” in each of them. 
The shape of each spectrum has a specific meaning and corresponds to a different 
medical condition, so within the same GL class we can find different subtypes of 
brain tissue. In other words, a sample classified as GL could be further subclassified 
depending on where it lies within the network. 

4 Conclusions 

The FI can work as a measure of how similar points in the space are with respect to 
some class membership probability distribution. To do so, we derive a metric from the 
FI matrix, and therefore a distance measure. This can be used to build a relational 
network that captures similarity in the original data space and translates it into node to 
node connections, resulting in a more interpretable representation of the data, 
especially when the original data space is of high dimensionality. 
The structure of the network contains useful information on how the data is 
distributed in the space. Section 3.3 presented a very simple analysis of some of the 
substructures found in the dataset. Our motivation for the use of networks is to 
develop a way of interpreting new data by mapping it into the base network and 
relating it to the reference cases in it. By doing so, we go from just a scalar that 
represents the probability of a point belonging to a certain class to a much more 
informative tool that not only predicts a category for the data, but also puts it into 
context by telling how it relates to the most representative cases. 
It is important to bear in mind the small sample size of the data (109 points in a 195-
dimensional space). We chose to keep the original size in the synthetic dataset 
because it is not crucial for our aim of showing the interpretability of the 
methodology. However, if the estimation of the probability surfaces was required to 
be very precise, a larger dataset would be necessary.  
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